Series PM130 Powermeters

Installation and Operation Manual

BG0306 Rev. A1

LIMITED WARRANTY

The manufacturer offers the customer an 24-month functional warranty on the instrument for faulty workmanship or parts from date of dispatch from the distributor. In all cases, this warranty is valid for 36 months from the date of production. This warranty is on a return to factory basis.

The manufacturer does not accept liability for any damage caused by instrument malfunction. The manufacturer accepts no responsibility for the suitability of the instrument to the application for which it was purchased.

Failure to install, set up or operate the instrument according to the instructions herein will void the warranty.

Your instrument may be opened only by a duly authorized representative of the manufacturer. The unit should only be opened in a fully anti-static environment. Failure to do so may damage the electronic components and will void the warranty.

NOTE

The greatest care has been taken to manufacture and calibrate your instrument. However, these instructions do not cover all possible contingencies that may arise during installation, operation or maintenance, and all details and variations of this equipment are not covered by these instructions.

For additional information regarding installation, operation or maintenance of this instrument, contact the manufacturer or your local representative or distributor.

IMPORTANT

Please read the instructions this manual before performing installation, and take note of the following precautions:

- Ensure that all incoming AC power and other power sources are turned OFF before performing any work on the instrument. Failure to do so may result in <u>serious or even fatal injury</u> and/or equipment damage.
- Before connecting the instrument to the power source, check the labels on the side of the instrument to ensure that your instrument is equipped with the appropriate power supply voltage, input voltages, currents and communication protocol for your application.
- Under no circumstances should the instrument be connected to a power source if it is damaged.

- To prevent potential fire or shock hazard, do not expose the instrument to rain or moisture.
- The secondary of an external current transformer must never be allowed to be open circuit when the primary is energized. An open circuit can cause high voltages, possibly resulting in equipment damage, fire and even <u>serious or fatal injury</u>. Ensure that the current transformer wiring is made through shorting switches and is secured using an external strain relief to reduce mechanical strain on the screw terminals, if necessary.
- Setup procedures must be performed only by qualified personnel familiar with the instrument and its associated electrical equipment.

DO NOT open the instrument under any circumstances.

Modbus is a trademark of Modicon, Inc.

Read this manual thoroughly before connecting the meter to the current carrying circuits. During operation of the meter, hazardous voltages are present on input terminals. Failure to observe precautions can result in serious or even fatal injury or damage to equipment.

BG0306 Rev. A1

Table of Contents

Chapt	er 1 Introduction	1
1.1	About This Manual	1
1.2	About The PM130	1
Chapt	er 2 Installation	6
2.1	Mechanical Installation	6
2.2	Electrical Installation	8
Chapt	er 3 Using The Menus	17
Chapt	er 4 Setup Menus	19
4.1	Basic Setup Menu	19
4.2	Communications Port Setup Menu	21
4.3	Pulsing Output Setup Menu (PM130E)	
4.4	Alarm/Event Setpoints Setup Menu	23
4.5	Relay Operation Control Menu	27
4.6	Display Setup Menu	
4.7	User Selectable Options Menu	29
4.8	Access Control Menu	
4.9	Reset/Synchronization Menu	31
Chapt	er 5 Data Display	
5.1	Navigating in the Display Mode	
5.2	Data Display Formats	
5.3	Self-Test Diagnostics Display	
Chapt	er 6 Viewing Status Information	41
6.1	The Status Information Menu	41
6.2	Status Display Formats	

Quick Start

TYPICAL INSTALLATION

(see Section 2.2.4 for full instructions)

Km LINE 1(A) -Km LINE 2(B) LOAD Kom LINE 3(C) NO Shorting . -1 . . Switches 2A TRUEMETER ٧ı V2 Va VN OPTIONAL RELAY OUTPUT 250VAC,3A CT1 11 СТЗ 13 MASTER (PC) Ň CT2 12 RS-485 RS-485 NETWORK Ţ UP TO 31 POWERMETERS ī Ø SLAVE 5A **RS-485** OPTIONAL CT WIRE LINE AC TERMINALS N NOTE: CT MARKINGS к S1 P B B S2 00-03023

Wiring Mode: 4LL3

iv

SETUP (see Chapter 4 for full instructions)

All setups can be performed directly on the front panel or via communications using PComTest communication software, except for Communications and Display setups which must be performed directly on the instrument panel.

Performing Basic and Communications Setup	menu	bASc≧			
Press SELECT → CHG → ENTER.	option	ConF			
Press SELECT to activate middle window.	value	4L-n ≷			
Press ▲ ▼ to scroll to desired option.					
Press SELECT to activate lower window.	menu	Port 🕈			
Press ▲▼ to scroll to desired <i>value</i> .	option	Prot 🕈			
Press ENTER to save selected value.	value	ASCII₿			

Basic and Communications Setup Options (* default setting)

Code	Parameter	Options	Description	
ConF	Wiring mode	30P2	3-wire open delta using 2 CTs	
		4Ln3*	4-wire vvye using 3 PTs	
		3dir2	3-wire direct connection using 2 C1s	
		4LL3	4-wire Wye using 3 PTs	
		30P3	3-wire open delta using 3 CTs	
		3Ln3	4-wire Wye using 2 PTs	
		3LL3	4-wire Wye using 2 PTs	
Pt	PT ratio	1.0* - 6,500.0	The potential transformer ratio	
Ct	CT primary current	1-50,000A	The primary rating of the current	
		(5*)	transformer	
d.P	Power demand	1, 2, 5, 10,	The length of the period for power	
F	period	15*, 20, 30,	demand calculations, in minutes.	
		60, E	E = external synchronization	
n.dp	Number of power	1-15	The number of demand periods to be	
E	demand periods	(1*)	averaged for sliding window demands	
			1 = block interval demand calculation	
A.dP	Ampere/Volt	0-1800	The length of the period for	
	demand period	(900*)	volt/ampere demand calculations, in	
			seconds 0 = measuring peak current	
buF	Averaging buffer	8*,16,32	The number of cycles for RMS sliding	
	size		averaging	
rSt	Reset	diS∗, En	Protects all reset functions, both via	
	enable/disable		the front panel or communications	
Freq	Nominal frequency	50, 60 Hz	The nominal power utility frequency	
Prot	Communications	ASCII*, rtu,	ASCII, Modbus RTU or DNP3.0	
	protocol	dnP3	protocol	
rS	Interface standard	485	RS-485 interface (not changeable)	
Addr	Address	ASCII: 0*-99, Modbus: 1*-247, DNP3.0: 0*-255		
bAud	Baud rate	110, 300, 600, 1200, 2400, 4800, 9600*, 19200 bps		
dAtA	Data format	7E , 8E (7/8 bits, even parity), 8n* (8 bits, no parity)		

Chapter 1 Introduction

1.1 About This Manual

This manual is intended for the user of the *PM130* Powermeter. The *PM130* is a microprocessor-based instrument used for measurement, monitoring, and management of electrical parameters.

This chapter gives an overview of this manual and an introduction to the *PM130*.

Chapter 2, *Installation*, provides instructions for mechanical and electrical installation.

Chapter 3, *Using the Menus*, presents the structure of menus for setup and status viewing.

Chapter 4, *Setup Menus*, provides instructions for performing parameter setup via the front panel.

Chapter 5, *Data Display*, guides you through the display pages.

Chapter 6, *Viewing Status Information*, tells you how to access additional status information on the instrument. This information may be useful during installation.

Technical Specifications for the PM130 are found in the Appendix.

1.2 About The PM130

The *PM130* is a compact panel mounted 3-phase AC Powermeter, specially designed to meet the requirements of users ranging from electrical panel builders to substation operators. The *PM130* is available in three models: the *PM130* for basic voltage, current and frequency measurements; the *PM130P* which adds power and power factor measurements; and the *PM130E* which adds power demands and energy measurements. All models are suitable for mounting on both 4-inch round and 92x92mm square cut-outs.

Features

Display: The front panel features bright LED displays (three windows, up to 38 pages) with adjustable display update time, and a LED **bar graph** showing percentage load with respect to userdefinable nominal (100%) load current. In the common measurements group (see Chapter 5), **Display Auto Scroll** is available with a programmable scroll interval of 2 to 15 seconds. Automatic return to the main screen is available after 30 seconds of uninterrupted use.

Setup is menu driven, with optional password protection.

Communications are available using an RS-485 standard, with ASCII/Modbus or ASCII/DNP3.0 protocols. 120 user assignable registers are available. Transmitter and receiver status are displayed on the status information page (see Chapter 6).

One multi-purpose relay (optional) is provided for energy pulsing (KYZ) or alarm and remote control. Up to 16 setpoints can be assigned to the relay.

Four time operation counters are provided which are operated and released by user-defined triggers. These are for counting total generator time or transformer or power line time overload.

External synchronization of the power demand interval is provided through communications in the *PM130E*.

Three user-selectable options are provided:

Power calculation mode (P.cAL):

Mode 1: Reactive power calculation (rEAc)

Active power P and reactive power Q are measured directly and apparent power S = $\sqrt{P^2 + Q^2}$

Mode 2: Non-active power calculation (nAct)

Active power is measured directly, and apparent power S = V × I (V, I - rms voltage and currents) and non-active power N = $\sqrt{S^2 - P^2}$

Mode 1 is recommended for electrical networks with low harmonic distortion (voltage THD < 5%, current THD < 10%); Mode 2 is recommended for all other cases. (*The PM130 does not measure harmonics; contact your distributor for information on instruments that provide harmonic measurement*).

Energy rollover value (roll - PM130E only)

This option specifies the point at which the energy value rolls over to zero. For example, if the roll value is 10.E4, then the energy counter has 4 digits, i.e., energy is displayed up to 9999 kWh (kvarh, kVAh) with resolution 1 kW-hour.

Roll value	Maximum Energy	Resolution
10.E4 9999 kWh (kvarh, kVAh) 1 k		1 kWh (kvarh, kVAh)
10.E5	99999 kWh (kvarh, kVAh)	1 kWh (kvarh, kVAh)
10.E6	999.99 MWh (kvarh, kVAh)	10 kWh (kvarh, kVAh)
10.E7	9999.9 MWh (kvarh, kVAh)	100 kWh (kvarh, kVAh)
10.E8	99999. MWh (Mvarh, MVAh)	1 MWh (Mvarh, MVAh)

The roll value may be changed in accordance with the average load of the power line. For example, if average power equals 400 kW and the counter must reset every 3 months (2160 hours), then energy during this period equals 864000 (6 digits) and the roll = 10.E6.

Phase energy calculations mode (Ph.En)

This option is used to enable or disable phase energy calculations.

Measured Parameters

Note: Real-time values are measured over 1 cycle of fundamental frequency; Average values are of 8, 16 or 32 real-time values

P E available in the PM130P/PM130E			Output
Parameter	Display	Comm.	Pulse Alarm
Average Values: Amps, Volts,	\$ = setup via PC		
Frequency		# = :	setup via panel
Average RMS Voltage per phase	✓	~	#\$
Average RMS Current per phase	✓	~	#\$
Average Frequency	✓	✓	#\$
Average Neutral Current	✓	~	#\$
Voltage & Current unbalance	✓	~	
Amps & Volt Demand Parameters			
Ampere Demand per phase		~	#\$
Volt Demand per phase		✓	#\$
Ampere Maximum Demand per phase	✓	~	
Voltage Max. Demand per phase P E	✓	~	
Average Power values			
Average Active Power per phase	✓	✓	
Average Reactive Power per phase	✓	~	
Average Apparent Power per phase	✓	~	
Average Total Active Power	✓	~	#\$
Average Total Reactive Power	✓	~	#\$
Average Total Apparent Power	✓	~	#\$
Average Power Factor per phase	✓	✓	
Average Total Power Factor	✓	✓	#\$
Power Demand Parameters			
Active Power Accumulated Demand		~	#\$
Apparent Power Accumulated Demand		~	#\$
Active Power Demand		~	#\$
Active Power Sliding Demand		~	#\$
Apparent Power Demand		~	#\$
Apparent Power Sliding Demand		~	#\$
Active Power Predicted Demand		\checkmark	#\$
Apparent Power Predicted Demand		✓	#\$

Chapter 1 Introduction

P E available in the PM130P/PM130E			Outp	ut
Parameter	Display	Comm.	Pulse	Alarm
Active Power Maximum Demand	✓	✓		
Apparent Power Maximum Demand	✓	✓		
Energy Per Phase				
Active Energy Import per phase	✓	✓		
Reactive Energy Import per phase	✓	✓		
Apparent Energy per phase	✓	~		
Total Energy				
Total Active Energy Import	✓	✓	#\$	
Total Active Energy Export	✓	~	#\$	
Total Reactive Energy Import	✓	~	#\$	
Total Reactive Energy Export	\checkmark	~	#\$	
Total Reactive Energy net		✓		
Total Reactive Energy Absolute			#\$	
Total Apparent Energy	✓	✓	#\$	
Min/Max Log				
Min/Max Volts	✓	✓		
Min/Max A, Neutral current		~		
Min/Max frequency	✓	~		
Min/Max kW, kvar, kVA, PF	✓	✓		
Real-time Amps, Volts, Frequency				
RT RMS Voltage per phase		~		#\$
RT RMS Current per phase		~		#\$
RT Frequency		✓		#\$
RT Neutral Current		✓		
RT Voltage & Current unbalance PE		✓		#\$
Real-time Power Values				
RT Active Power per phase		~		
RT Reactive Power per phase		✓		
RT Apparent Power per phase		✓		
RT Total Active Power		✓		
RT Total Reactive Power		✓		
RT Total Apparent Power		✓		
RT Power Factor per phase		✓		
RT Total Power Factor		✓		
Phase Rotation	✓			#\$
Counters	✓	✓		
Remote Relay Control		~		
Alarm Trigger Status		~		
Self-Diagnostic Tests	\checkmark	~		

Instrument Dimensions

Figure 1-1 PM130 Dimensions

Chapter 2 Installation

2.1 Mechanical Installation

- 1- Position Powermeter in cut-out
- 2- Affix the Powermeter using washers and nuts

Figure 2-1 Mounting the PM130 (Square or Round Cut-out)

99-07003-44

2.2 Electrical Installation

Before installation ensure that all incoming power sources are shut OFF. Failure to observe this practice can result in <u>serious or even fatal injury</u> and damage to equipment.

Connections to the *PM130* are made via terminals (voltage input, power supply, communication and optional relay output) and CT cores located on the rear of the instrument as shown in Figure 2-3.

Note: If your PM130 was not ordered with the optional relay, it will not have the relay connector.

Figure 2-3 PM130 Connections - Rear View

2.2.1 Power Supply Connection

The power supply can be dedicated-fused, or from a monitored voltage if it is within the instrument's power supply range. Connection to the AC power supply is: Line to terminal L; Neutral to terminal N.

2.2.2 Current Inputs

To ensure accurate readings, the input current should not exceed 1.5A RMS for the 1A CT secondary, or 7.5A RMS for the 5A CT secondary.

The *PM130* does not have current terminals. To connect to the external CT, you must pass the external CT wire through the instrument CT core (see Figure 2-4).

In the case of a retrofit where each external CT ends with two wires, pass one wire through the core and connect it to one of the instrument termination screws; connect the second wire from the termination screw to the external CT to close the loop. **One wire must pass through the core;** observe the arrow which indicates the current direction (see Figure 2-4).

2.2.3 Ground

Connect the ground *PM130* terminals of the power supply and communication connectors to the switchgear earth ground using $1.5 \text{ mm}^2/14 \text{ AWG}$ dedicated wire.

10

Chapter 2 Installation

2.2.4 Voltage Inputs

690V Inputs (Standard):

690V Input (Standard)

690V inputs are usually used with direct connection. Use any of the seven wiring configurations shown in *Figures 2-5* through *2-11*.

120V Inputs (Option U):

120V Input (Option U)

120V inputs usually implies use of a potential transformer (PT). The PT requires use of any of the four wiring configurations shown in *Figures 2-7* through 2-10.

Wiring Configurations (See parameter setup instructions	'Wiring Mode in Section 4.1)	' Definition
3-wire direct connection using 2 CTs (2-element)	3dir2	(Figure 2-5)
4-wire WYE direct connection using 3 CTs (3-element)	4Ln3 or 4LL3	(Figure 2-6)
4-wire WYE connection using 3 PTs, 3 CTs (3-element)	4Ln3 or 4LL3	(Figure 2-7)
3-wire open delta connection using 2 PTs, 2 CTs (2-element)	30P2	(Figure 2-8)
3-wire open delta connection using 2 PTs, 3 CTs (2 ¹ / ₂ -element)	3OP3	(Figure 2-9)
4-wire WYE connection using 2 PTs, 3 CTs (2 ¹ / ₂ -element)	3Ln3 or 3LL3	(Figure 2-10)
4-wire delta direct connection using 3 CTs (3-element)	4Ln3 or 4LL3	(Figure 2-11)

Figure 2-5

Connection Using 2 CTs

Chapter 2 Installation

Figure 2-11 Four Wire Delta Direct Connection Using 3 CTs (3 element) Wiring Mode = 4LL3 or 4Ln3

2.2.5 Relay

One relay (optional) is provided for energy pulsing, alarms or remote control.

c99-07014

Figure 2-12 Relay Connection

2.2.6 Communications

A connection to the RS-485 communication port can be made from a distance of up to1200 meters, with up to 32 instruments on one multi-drop line.

Figure 2-13 RS-485 Multidrop Computer Connection

NOTE: Where an RS-232/RS-485 converter is used on a computer connection, R1 is not applicable since it is built in to the converter.

Activity on the communications port lines is indicated via the Status Information menu (see Chapter 6).

A full description of the communication protocols may be found in the *PM130 ASCII, Modbus* or *DNP3.0 Communications Manuals* provided with your instrument.

Chapter 3 Using The Menus

Press **SELECT** to enter the setup mode. The primary menus will appear:

StA 🛓	-	Status Information Menu	(see Chapter 6)
-------	---	-------------------------	-----------------

- OPS I Setup Options Menu
 - Setup Change Menu (see Chapter 4)

Press **SELECT** again to activate the window of the desired primary menu. Press **ENTER**.

Select **CHG** to initialize or modify the instrument setup, or to clear the accumulated values stored in the instrument. Entry to this menu can be protected by a password.

•	SELECT	→	CHG	→	ENTER
Select StA to view extended status information which may be useful during installation and in certain applications.					
	SELECT	→	StA	→	ENTER
Select OPS for	<i>viewing</i> (no	t editin	g) the instrur	ment setu	up options.
	SELECT	→	OPS	→	ENTER

After selecting either *OPS* or *CHG*, the list of setup menus is displayed in the upper window. Figure 3-1 presents a complete menu list. Depending on the model of your instrument, some menus may not appear.

Password

CHG 🗄

The *Setup Change Menu* can be secured by a user-defined password comprised of 4 digits. The instrument is shipped with password protection disabled. To enable password protection, go to the *Access Control Menu* (see Section 4.13).

The Password Menu appears if password protection is enabled.

To enter a password:

- ✓ Set the first digit using the up and down arrow keys.
- ✓ Press SELECT to advance to the next digit. As you advance, the previous digit will become invisible.

- ✓ Set the other password digits in the same manner.
- ✓ Press ENTER to continue setup. If your password is incorrect, you will return to the *Primary Selection Menu*.

Figure 3-1 Menu Structure

Chapter 4 Setup Menus

NOTE: Instrument setup can be performed directly on the front panel using the setup menus or via communications using PComTest communication software. PComTest is supplied with your instrument and provides full setup capabilities for your instrument. For information on using PComTest, refer to the user documentation supplied with your instrument.

4.1 Basic Setup Menu

This menu contains the basic configuration options which define the general operating characteristics of your instrument, such as wiring mode, input scales, the size of the RMS averaging buffer, etc. Table 4-1 lists the basic setup options, their code names and applicable ranges.

Activate the middle window to scroll through the list of available options, and then activate the lower window to set the option value.

To select and view a setup option:

- ✓ Press **SELECT** to activate the middle window
- ✓ Use the up/down arrow keys to scroll to the desired option. The current value for this option appears in the lower window.

To change the value of the selected option:

- \checkmark Press **SELECT** to make the lower window active.
- ✓ Press the up/down arrow keys to scroll to the desired value.
- ✓ Press ENTER to store the selected value, or press ESC to quit the setup menu.

Table 4-1 Basic Setup Options (* default setting)

Code	Parameter	Options	Description
ConF	Wiring mode	30P2	3-wire open delta using 2 CTs
			(2 element)
		4Ln3*	4-wire Wye using 3 PTs (3 element), line to neutral voltage readings
		3dir2	3-wire direct connection using 2 CTs (2 element)
		4LL3	4-wire Wye using 3 PTs (3 element), line to line voltage readings

Code	Parameter	Options	Description
ConF	Wiring mode	30P3	3-wire open delta using 3 CTs (2 ¹ / ₂ element)
		3Ln3	4-wire Wye using 2 PTs (2 ¹ / ₂ element), line to neutral voltage readings
		3LL3	4-wire Wye using 2 PTs (2 ¹ / ₂ element), line to line voltage readings
Pt	PT ratio	1.0* - 6,500.0	The potential transformer ratio
Ct	CT primary current	1-50,000 (5*)	The primary rating of the current transformer, in A
d.P	Power demand period	1, 2, 5, 10, 15*, 20, 30,	The length of the period for power demand calculations, in minutes . E = external synchronization \bigcirc
		60, E	The second design of the second secon
n.ap	power demand periods	1-15 (1*)	be averaged for sliding window demands
	(PM130E)		1 = block interval demand calculation
A.dP	Ampere/Volt demand period	0-1800 (900*)	The length of the period for volt/ampere demand calculations, in seconds
			0 = measuring peak current
buF	Averaging buffer size	8*,16,32	The number of measurements for RMS sliding averaging
rSt	Reset enable/disable	diS∗, En	Protects all reset functions, both via the front panel or communications.
Freq	Nominal frequency	50, 60 Hz ②	The nominal power utility frequency

① Synchronization of the power demand interval can be made through communications (see the *PM130* Communications Reference Guides) or via the front panel (see Section 4.9). If the power demand period is set to E, an external synchronization pulse denoting the start of the next demand interval can be simulated by using the synchronization command sent via communications.

② 60 Hz default for North America; elsewhere, default is 50Hz.

NOTES

- 1) The maximum value for CT PRIMARY CURRENT × PT RATIO is 10,000,000. If this product is greater, power related values will be zeroed.
- Always specify WIRING MODE, PT RATIO and CT PRIMARY CURRENT prior to setting up alarm setpoints, otherwise the alarm/event setpoints which use these parameters will automatically be disabled.

4.2 Communications Port Setup Menu

This menu allows you to access the communications port options that the *PM130* uses to communicate with a master computer. Table 4-2 lists the communications options, their code names and applicable choices.

Activate the middle window to scroll through the list of available options, and then activate the lower window to set the option value.

To select and view a setup option:

- ✓ Press **SELECT** to activate the middle window.
- ✓ Use the up/down arrow keys to scroll to the desired option. The option setting will appear in the lower window.

To change the selected option:

- ✓ Press SELECT to activate the lower window.
- ✓ Press the up/down arrow keys to scroll to the desired value.
- ✓ Press ENTER to store the selected value or press ESC to quit the setup menu.

Table 4-2 Communications Options (* default setting)

Code	Parameter	Options	Description
Prot	Communications protocol	ASCII* rtu dnP3	ASCII protocol Modbus RTU protocol DNP3.0 protocol
rS	Interface standard	485	RS-485 (not changeable)
Addr	Address	0*-99 ASCII 1*-247 Modb 0*-255 DNP3	Powermeter address us 3.0
bAud	Baud rate	110 300 600 1200 2400 4800 9600* 19.20	110 baud 300 baud 600 baud 1200 baud 2400 baud 4800 baud 9600 baud 19,200 baud
dAtA	Data format	7E 8n* 8E	7 bits, even parity 8 bits, no parity 8 bits, even parity

4.3 Pulsing Output Setup Menu (PM130E)

 $SELECT \rightarrow CHG \rightarrow ENTER \land \checkmark \rightarrow PulS \rightarrow ENTER$

This menu allows you to program a relay (optional) provided by your *PM130E* instrument to output energy pulses. Available pulsing parameters are listed in Table 4-3.

rEL	MM
Ac.Ei	λW
1	MM

To change the pulse relay setup:

- ✓ Press SELECT to activate the middle window.
- Use the up/down arrow keys to scroll to the desired output parameter. Selecting *nonE* disables pulsing through this relay.
- ✓ Press SELECT to activate the lower window.
- ✓ Use the up/down arrow keys to set the amount of unit-hours per pulse. The available range is 1-9999.
- ✓ Press ENTER to store the new setup, or press ESC to quit the setup without changes.

To quit the pulsing setup menu:

✓ From the upper window, press ESC or ENTER .

Table 4-3 Pulsing Output Parameters

Code	Parameter	Units
nonE	Output disabled	
Ac.Ei	Active energy import	kWh import (positive)
Ac.EE	Active energy export	kWh export (negative)
rE.Ei	Reactive energy import	kvarh import (inductive)
rE.EE	Reactive energy export	kvarh export (capacitive)
rE.Et	Reactive energy total	kvarh total (absolute)
AP.Et	Apparent energy total	kVAh total

NOTES

- 1. If your instrument is not equipped with the optional relay, then this setup parameter will not appear on the display.
- You will not be able to store your setup in the instrument if you assigned a parameter to relay output with a zero number of unithours per pulse.
- 3. If a relay you allocated for pulsing has been manually operated or released, it reverts automatically to normal operation.
- 4. If a relay you allocated for pulsing has been engaged by an alarm/event setpoint, the setpoint is automatically disabled.

4.4 Alarm/Event Setpoints Setup Menu

SELECT	→	CHG	∣→	ENTER		♥	→	SEtP	→	ENTER
--------	---	-----	----	-------	--	---	---	------	---	-------

Your instrument provides 16 alarm/event setpoints that can monitor a wide variety of events; in turn, these events can be programmed to trigger specific actions. This menu is used to specify the events to be monitored by the setpoints, and actions to be triggered by those events.

To program a setpoint (all 16 can be assigned to the relay) you need to define up to six setup parameters: the setpoint trigger parameter, operate and release limits, optional operate and release delays, and the setpoint action. Tables 4-4, 4-5 and 4-6 list the setpoint setup parameters, available triggers and setpoint actions.

Example:

SP 1 triG RHi.C1	Trigger parameter	Setpoint 1 is set to monitor the real-time high current on phase 1 (the trigger parameter).
SP 1 On 1 1200 1 SP 1 OFF 1 1100 1	Operate limit } } } Release limit }	The operate (<i>On</i>) and release (<i>OFF</i>) limits which determine setpoint operation are defined as 1200A and 1100A respectively.
SP 1 On d 5 d SP 1 OFFd 10	Operate delay } } Release delay }	The delays before operation (<i>On d</i>) and release (<i>OFFd</i>) are set at 5 seconds and 10 seconds respectively.
SP 1	Setpoint action	The action to be triggered is relay operation.

To select a setpoint:

✓ Scroll to the desired setpoint using the up/down arrow keys.

To view the setup options for the setpoint:

✓ Press SELECT to activate the middle window.

✓ Use the up/down arrow keys to scroll to the desired setup option. The value associated with this option is displayed in the lower window.

To change the selected setup option:

- ✓ Press (SELECT) to activate the lower window.
- \checkmark Use the up/down arrow keys to scroll to the desired value.
- ✓ Press ENTER to store the new value.
- \checkmark Press **ESC** to leave the value unchanged.

To store your new setup for the setpoint:

✓ From the middle window, press ENTER.

To quit the setpoint setup without changes:

✓ From the middle window, press ESC.

To quit the setpoints setup menu:

✓ From the upper window, press ESC or ENTER .

NOTES

- 1. If your instrument is not equipped with the optional relay, then these setup parameters will not appear on the display.
- When you enter the setpoints setup menu at the protected level, monitoring setpoints is temporarily suspended until you return to the main setup menu.
- 3. Each time you select a new trigger parameter, the operate and release limits are set by default to zero.
- 4. You will not be able to store your setpoint setup to the instrument if a setpoint action is directed to a relay allocated for pulsing.
- The setpoint action directed to a relay output can be overridden using commands sent via communications. A relay can be manually operated or released. When the relay reverts to normal operation, it is automatically returned under setpoint control.

Table 4-4 Setpoint Setup Options (middle window)

Code	Option	Description
triG	Trigger parameter	The measurement parameter or signal to be monitored by the setpoint.
On	Operate limit	The threshold at which the setpoint becomes operative.
OFF	Release limit	The threshold at which the setpoint is released (becomes inoperative).
On d	Operate delay	Time delay (0.1 sec.resolution) before operation.
OFF d	Release delay	Time delay (0.1 sec. resolution) before release.
Act	Setpoint action	The action performed when the setpoint is operative.

Code	Parameter	Unit	Range	
nonE	Setpoint disabled			
	Phase Reversal			
POS.ro.	Positive phase rotation reversal ①			
NEG.ro.	Negative phase rotation reversal I)		
	Real-time Values on any Phase			
r. Hi. U	High voltage ③		V	0 to Vmax
r. Lo. U	Low voltage 3		V	0 to Vmax
r. Hi. C	High current		A	0 to Imax
r. Lo. C	Low current		A	0 to Imax
Rea	al-time Auxiliary Measurements	i		
r. Hi.Fr	High frequency ②		Hz	0 to 100.00
r. Lo.Fr	Low frequency @		HZ	0 to 100.00
r. U.Unb r. C.Unb	Voltage unbalance	PE	% %	0 to 300
1. 0.0110	Average Values per Phase	PIE	70	0 10 300
A 11: 01	Lieb summent 1		٨	O to Image
	High current L2		A	0 to Imax
A HiC3	High current L3		Δ	0 to Imax
A 1 0 C1	Low current 1		A	0 to Imax
A. Lo.C2	Low current L2		A	0 to Imax
A. Lo.C3	Low current L3		А	0 to Imax
	Average Values on any Phase			
A. Hi. U	High voltage ③		V	0 to Vmax
A. Lo. U	Low voltage 3		V	0 to Vmax
A. Hi. C	High current		A	0 to Imax
A. Lo. C	Low current		A	0 to Imax
	Average Total Values	PE		
A. Hi.P.i	High total kW import (positive)		kW	0 to Pmax
A. Hi.P.E	High total kW export (negative)		kW	0 to Pmax
A. Hi.q.i	High total kvar import (positive)		kvar	0 to Pmax
A. HI.Q.E	High total kVar export (negative)		kvar kv/A	0 to Pmax
A PEIG	Low total PE Lag		кvА	0 to 1 000
A. PF.Ld	Low total PF Lead			0 to 1.000
Α	verage Auxiliary Measurements	;		
Ar neU C	High neutral current		A	0 to Imax
Ar Hi.Fr	High frequency 2		Hz	0 to 100.00
Ar Lo Fr	Low frequency @		Hz	0 to 100 00
7.0 20.1 1	Present Demands			0.00 100.00
Hid 111	High yolt demand 1.1 @	PE	V	0 to Vmax
Hid U2	High volt demand L 2 3		v	0 to Vmax
Hi d.U3	High volt demand L3 3		v	0 to Vmax
Hi d.C1	High ampere demand L1		Å	0 to Imax
Hi d.C2	High ampere demand L2		А	0 to Imax
Hi d.C3	High ampere demand L3		А	0 to Imax

Table 4-5 Setpoint Triggers (lower window, when middle window is *triG*)

Chapter 4 Setup Menus

Code	ŀ	Unit	R	ange			
Hi d.P	High block inter	val kW	demand	Е	kW	0 to	Pmax
Hi d.S	High block inter	val kVA	demand	Е	kVA	0 to	Pmax
Hi Sd.P	High sliding win	dow kW	/ demand	Е	kW	0 to	Pmax
Hi Sd.S	High sliding win	dow kV	A demand	E	kVA	0 to	Pmax
Hi Ad.P	High accumulate	kW	0 to	Pmax			
Hi Ad.S	High accumulate	E	kVA	0 to	Pmax		
Hi Pd.P	High predicted s demand	kW	0 to	Pmax			
Hi Pd.S	High predicted s demand	kVA	0 to	Pmax			
P available in the PM130P			E available	in the	PM13	30E	

The parameter limits are as follows:

 $\begin{array}{l} \textbf{Vmax} (690 \ V \ input \ option) = 828 \ V @ \ PT \ Ratio = 1 \\ \textbf{Vmax} (690 \ V \ input \ option) = 144 \times \ PT \ Ratio [V] @ \ PT \ Ratio > 1 \\ \textbf{Vmax} (120 \ V \ input \ option) = 144 \times \ PT \ Ratio [V] \\ \textbf{Imax} (50\% \ over-range) = 1.5 \times \ CT \ primary \ current \ [A] \\ \textbf{Pmax} = (Imax \times \ Vmax \times 3)/1000 \ [kW] @ \ wiring \ mode \ 4Ln3 \ or \ 3Ln3 \\ \textbf{Pmax} = (Imax \times \ Vmax \times 2)/1000 \ [kW] @ \ wiring \ mode \ 4LL3, \ 3OP2, \ 3dir2, \ 3OP3 \ or \ 3LL3 \\ \end{array}$

- ① The setpoint is operated when the actual phase sequence does not match the indicated normal phase rotation.
- ② The actual frequency range is 45.00 65.00 Hz.
- ③ For 4LN3 or 3LN3 wiring modes, voltages will be line-to-neutral; for any other wiring mode, they will be line-to-line.

Table 4-6	Setpoint Actions
	(lower window, when middle window is Act)

Code	Action
nonE	No action ①
rEL	Operate relay
In.Cn.1	Increment counter #1
In.Cn.2	Increment counter #2
In.Cn.3	Increment counter #3
In.Cn.4	Increment counter #4
ti.Cn.1	Count operating time using counter #1 ②
ti.Cn.1	Count operating time using counter #2 ②
ti.Cn.1	Count operating time using counter #3 ②
ti.Cn.1	Count operating time using counter #4 ②

- ① When a setpoint is operated, its status is always stored to the alarm status register even if no action is assigned to the setpoint. The alarm status can be inspected and cleared from the front panel through the *Status Information Menu* (see Section 6.2) or via communications.
- This action converts a common event counter to the time counter which measures time at 0.1 hour resolution while the setpoint is in the operated state. Each time counter has a non-volatile shadow counter which counts time at 1 second resolution before the corresponding time counter is incremented. Time counters can be inspected via the Status Information Menu. They are labeled by an *hour* mark in the middle window.

4.5 Relay Operation Control Menu

This menu allows you to set the relay operation mode: non-failsafe or failsafe. Failsafe relay operation is the opposite of normal operation where relay contacts are closed when a relay is operated (activated), and are open when a relay is released (deactivated). In failsafe mode, an alarm is activated by a nonenergized relay which will open in all cases when an alarm condition is present or an alarm setpoint is not operational either due to a loss of control power or due to corruption of the setpoint setup configuration. A failsafe relay is closed only if it is under setpoint control and no alarm conditions exist, or if it is manually operated via communications.

To change the relay operation mode:

- ✓ Press **SELECT** to activate the lower window.
- ✓ Use the up/down arrow keys to set the desired option. Select *nor* for normal (non-failsafe) relay operation, or select *FSAFE* for failsafe relay operation.

MM
WW
NM

✓ Press ENTER to store your new setting or press ESC to leave your previous setting unchanged.

To quit the setup menu:

✓ From the middle window, press ESC or ENTER .

NOTES

- 1. You will not be able to change the relay operation mode if a relay has been allocated for pulsing.
- 2. When a failsafe relay is allocated for pulsing, it automatically reverts to normal operation.

4.6 Display Setup Menu

SELECT 🗲	CHG	→	ENTER		•	→	diSP	→	ENTER
----------	-----	---	-------	--	---	---	------	---	-------

This menu allows you to view and change display properties. Table 4-7 lists available options with their code names and applicable ranges.

Table 4-7 Disp	ay Options	(* default setting)
----------------	------------	---------------------

Display	Code	e Parameter	Options	Description
diSP UPdt 0.5	UPdt	t Update time	0.1 – 10.0 (0.5)*	s defines interval between display updates
diSP M ScrL M 5 M	ScrL	Auto scroll interval	nonE* 2-15 s display; de	disables/enables auto scroll on common measurements fines auto scroll interval
diSP m rEtn m 5 m	rEtn	Auto return to the main screen	diS*, En	Disables/enables auto return to the main screen after 30 seconds of uninterrupted use
diSP bAr 5000	bAr	Nominal load current for LED bar graph	0-50000A (0*)	defines the nominal load (100%) level for the bar graph display (0 = CT primary current)
diSP Ph.P diS	Ph.P	Phase powers display mode	diS*, En	disables/enables display of phase powers in common measurements
		P available in the	e PM130P	E available in the PM130E

To select a display option:

✓ Press SELECT to activate the middle window, and then use the up/down arrow keys to scroll to the desired option.

To change the display option:

- ✓ Press SELECT to activate the lower window.
- ✓ Use the up/down arrow keys to set the desired option.
- ✓ Press ENTER to store your new setting or press ESC to leave your previous setting unchanged.

To quit the display setup menu:

✓ From the middle window, press ESC or ENTER .

4.7 User Selectable Options Menu

This menu allows you to change options which relate to the instrument features and functionality. Table 4-8 lists all available options with their code names and applicable ranges.

To select an option:

✓ Press SELECT to activate the middle window, and then use the up/down arrow keys to scroll to the desired option.

To change the selected option:

- ✓ Press SELECT to activate the lower window.
- \checkmark Use the up/down arrow keys to set the desired value.
- ✓ Press ENTER to store your new setting or ESC to leave the previous setting unchanged.

To quit the display setup menu:

✓ From the middle window, press ESC or ENTER .

Code	Parameter	Options	Description
P.cAL	Power calculation	rEAc*	Using reactive power
	mode PE	nAct	Using non-active power
roLL	Energy roll value E	10.E4	10,000
		10.E5	100,000
		10.E6	1,000,000
		10.E7	10,000,000
		10.E8*	100,000,000
Ph.En	Phase energy measurements E	diS*, En	Enables/disables measurements of energies per phase
P available in the PM130P		E availab	le in the PM130E

Table 4-8 User Selectable Options (* default setting)

4.8 Access Control Menu

 $SELECT \rightarrow CHG \rightarrow ENTER \land \checkmark \rightarrow AccS \rightarrow ENTER$

This menu can be only accessed via the *Setup Change Menu* (*CHG*). It is used in order to:

- change the user password
- enable or disable password check

To view an option setting:

- \checkmark Press **SELECT** to activate the middle window.
- ✓ Use the up/down arrow keys to scroll to the desired option (PASS or CtrL).

Password Setting

AccS
PASS 🔮
8780

Pass	word Protect	tion Control
	AccS	
	CtrL	
	OFF 🕈	

To change the password:

- \checkmark Press **SELECT** to activate the lower window.
- ✓ Use the up/down arrow keys to modify the password. The password can be up to four digits long.
- ✓ Press ENTER to store your new password, or ESC to leave the password unchanged.

To enable/disable password checking:

- ✓ Press SELECT to activate the middle window, and then use the up/down arrow keys to move to the CtrL entry.
- ✓ Press SELECT to activate the lower window.
- ✓ Use the up/down arrow keys to change the password checking status: select OFF to disable password protection, or select On to enable password protection.
- ✓ Press SELECT to store your new option, or ESC to leave the option unchanged.

To quit the setup menu:

✓ From the middle window, press ESC or ENTER.

Store your password in a safe place. If you do not provide the correct password, you will need to contact your local distributor for the super-user password to override password protection.

4.9 Reset/Synchronization Menu

SELECT 🗲 🕻	CHG 🗲		→ rSt	→	ENTER
------------	-------	--	-------	---	-------

This menu allows you to reset to zero the accumulators and Min/Max registers in your instrument, and also to synchronize the power demand interval in the *PM130E*. The menu can be only accessed via the *Setup Change Menu (CHG)*. If the reset is disabled from the *Basic Setup Menu* (see Section 4.1), you will not be able to enter this menu.

The menu uses the following labels:

E available in the PM130E

Е

Е

Е

- **EnrG** Resets total accumulated energies
- dnd Resets all total maximum demands
- *P.dnd* Resets total power maximum demands
- A.dnd Resets volt/ampere maximum demands
- Cnt Resets all event/time counters
- *Cnt.1* Resets counter # 1
- Cnt.2 Resets counter # 2
- *Cnt.3* Resets counter # 3
- *Cnt.4* Resets counter # 4
- Lo.Hi Resets Min/Max registers (does not affect maximum demands)
- *d.Snc* Provides synchronization of the power demand interval (see Notes below)

To reset the desired locations:

- ✓ Press SELECT to activate the middle window; use the up/ down arrow keys to scroll to the desired data location entry.
- ✓ Press SELECT to activate the lower window.
- ✓ Press and hold ENTER for about 5 seconds until the *do* label is replaced with *done*; release the key. You will return to the middle window.
- ✓ Press **ESC** to quit the menu.

NOTES:

If you select the *d.Snc* entry, take into consideration the following:

- If the power demand period is specified in minutes (see Section 4.1, Basic Setup Options), this action provides synchronization of the instrument's internal timer. If the time expired from the beginning of the current demand interval is more than 30 seconds, the new demand interval starts immediately, otherwise synchronization is delayed until the next demand interval.
- 2) The synchronization is made exactly 5 seconds after you first press and hold **ENTER**.

If the CHG is not secured by a password, fast reset of the Min/Max registers, maximum demands and energies can be done from the data display mode (see Section 5.1) and counters from the status information menu (see Section 6.1) without entering the reset menu.

Chapter 5 Data Display

↑

5.1 Navigating in the Display Mode

The front panel has a simple interface that allows you to display numerous measurement parameters in up to 38 display pages. For easier reading, the parameters are divided into three groups, each accessible by a designated key. These are:

- Common measurements no selection key
- Min/Max measurements selected by the MAX/MIN key
- Energy measurements selected by the ENERGY key

The up/down arrow keys are used as follows in the Display Mode:

- Scrolls through the pages downward (forward)
 - Scrolls through the pages upward (backward)
- ▲ V Returns to the first page within current measurement group

For each display page, up to three parameters can be displayed.

The **Load** bar graph displays the amount, in percent, of the current load with respect to user-defined nominal load current. The highest current measured by the PM130 is divided by the nominal load current as defined in the Display Setup Menu (see Section 4.6) and expressed as a percent by the LEDs (40% to 110%) which are lit. For example, if all LEDs up to and including 90% are lit, this means that the load is 90%-100% of the nominal load current. If the nominal load current is set to 0, the CT primary current setup is used.

In the *Display Mode*, the front panel display is updated approximately twice per second; you can adjust the display update rate via the *Display Setup Menu* (see Section 4.6).

Tables 5-1 and 5-2 list all displayed parameters and their LED indicators.

NOTES

- The common measurements group does not have a designated indicator LED. If no indicator LED is lit up below the display, this means that the common measurement parameters are being displayed at this time. To return to the common measurements from another group, just press the same key that you used to display this group (the key pointed to by an illuminated LED).
- 2. When you move to another measurement group, the instrument stores your last location; when you return to the previous group, the instrument restores the last page. At power up, the instrument always returns to the common measurements group and shows you the last page that was displayed prior to loss of power.

Selecting a Display Page

✓ Press the up/down arrow keys to scroll through display pages.

Selecting Common Measurements

✓ Press the key pointed to by the illuminated round LED below the front panel display. If no LED is lit up, this means that the front panel displays the common measurements parameters.

When Display Auto Scroll is in effect (see Section 4.6), the display will scroll automatically within 30 seconds after any of the following:

- power up
- returning to the common measurements display
- pressing either arrow key
- ✓ Press either arrow key to pause scrolling at the current page.

Selecting Min/Max Measurements

✓ Press the MAX/MIN key. Use the up/down arrow keys to scroll through Min/Max measurements.

Selecting Energy Measurements

✓ Press the ENERGY key. Use the up/down arrow keys to scroll through the different energy readings.

Auto Return to the Main Screen

If display Auto Return option is enabled (see Section 4.6), the display will automatically return to the main screen from any other measurement screen after 30 seconds of uninterrupted use.

Fast Reset of Accumulated Data

When changing data via the front panel is not secured by a password, you can reset the Min/Max registers, maximum demands and energies from the display mode without entering the reset menu.

- ✓ Select the display page of the data you want to reset. To reset:
 - Min/Max log registers: select a Min/Max page from the Min/Max measurements display (where a Max or Min round LED is illuminated).
 - Ampere and volt maximum demands: select the ampere or volt maximum demand page from the Min/Max measurements display (where a MAX DMD LED is illuminated, and volts or amps LEDs at the right are lit).
 - Power maximum demands: select the power maximum demand page from the Min/Max measurements display (where a MAX DMD LED is illuminated, and kVA/MVA and kW/MW LEDs at the right are lit).
 - Total and phase energies: select the energy measurements display.
- ✓ While holding the <u>SELECT</u> key, press and hold <u>ENTER</u> for about 5 seconds. The displayed data is reset to zero.

5.2 Data Display Formats

The display windows are labeled in the table as follows: 1 = upper window, 2 = middle window, 3 = lower window.

Page	Window	Indicator LED	Parameter <i>①</i>	Digits	Unit Ø
		Con	<u>nmon Measurements</u>		
1	1	V1/V1-2	Voltage L12	4	V/kV
1	2	V2/V2-3	Voltage L23	4	V/kV
1	3	V3/V3-1	L. Voltage L31	4	V/kV
2	1	V1/V1-2	Voltage L1 ④	4	V/kV
2	2	V2/V2-3	Voltage L2 ④	4	V/kV
2	3	V3/V3-1	P. Voltage L3 ④	4	V/kV
3	1	A1	Current L1	4	A/kA
3	2	A2	Current L2	4	A/kA
3	3	A3	Current L3	4	A/kA
4	1	A Neut	Neutral current	4	A/kA
4	2	Hz	Frequency	4	Hz
4	3	Phase Rot.	Phase rotation sequence (POS/NEG/ERR)	4	

Table 5-1 Displayed Parameters for the PM130

Chapter 5 Data Display

Page	Window	Indicator	Parameter <i>O</i>	Digits	Unit Ø
		<u> </u>	n/Max Measurements		
		MIN	minax medsurements		
1	1	V1/V1-2	Min. real-time voltage L1/L12 ③	4	V/kV
1	2	V2/V2-3	Min. real-time voltage L2/L23 ③	4	V/kV
1	3	V3/V3-1	Min. real-time voltage L3/L31 ③	4	V/kV
		MAX			
2	1	V1/V1-2	Max. real-time voltage L1/L12	34	V/kV
2	2	V2/V2-3	Max. real-time voltage L2/L23	34	V/kV
2	3	V3/V3-1	Max. real-time voltage L3/L31	34	V/kV
		MAX DMD			
3	1	A1	Max. ampere demand L1	4	A/kA
3	2	A2	Max. ampere demand L2	4	A/kA
3	3	A3	Max. ampere demand L3	4	A/kA

 $\ensuremath{\mathbbm O}$ Displayed readings for all electrical quantities except Min/Max log are sliding average values.

- ② Voltage and current readings with a decimal point are displayed in kV and kA. When the value width exceeds the window resolution, the right-most digits are truncated.
- ③ When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be line-toneutral; for any other wiring mode, they will be line-to-line voltages.
- ④ Displayed only in the 4LN3 or 3LN3 wiring mode.
- ⑤ 'L' and 'P' indicators appear only in the case of 4LN3 or 3LN3 wiring modes where both line-to-line and line-to-neutral voltages are present.

Page	Window	Indicator	Parameter <i>O</i>	Digits	Unit Ø
		Cor	nmon Measurements		
1	1	V1/V1-2	Voltage I 12	4	V/kV
1	2	V2/V2-3	Voltage L23	4	V/kV
1	3	V3/V3-1	L. Voltage L31	4	V/kV
2	1	V1/V1-2	Voltage I 1 @	4	V/kV
2	2	V2/V2-3	Voltage L2 ⑦	4	V/kV
2	3	V3/V3-1	P. Voltage L3 ⑦	4	V/kV
3	1	A1	Current L1	4	A/kA
3	2	A2	Current L2	4	A/kA
3	3	A3	Current L3	4	A/kA
4	1	kVA	Total kVA	4	kVA/MVA
4	2	PF	Total power factor	4	
4	3	kW	Total kW	4	kW/MW
5	1	A NEUT	Neutral current	4	A/kA
5	2	Hz	Frequency	4	Hz
5	3	kvar	Total kvar	4	kvar/Mvar
6	1		Ph.L1 ④		Label
6	2	PF	Power factor L1	4	
6	3	kW	kW L1	4	kW/MW
7	1	kVA	kVA L1	4	kVA/MVA
7	2		Ph.L1 ④		Label
7	3	kvar	kvar L1	4	kvar/Mvar
8	1		Ph.L2 ④		Label
8	2	PF	Power factor L2	4	
8	3	kW	kW L2	4	kW/MW
9	1	kVA	kVA L2	4	kVA/MVA
9	2		Ph.L2 ④		Label
9	3	kvar	kvar L2	4	kvar/Mvar
10	1		Ph.L3 ④		Label
10	2	PF	Power factor L3	4	
10	3	kW	kW L3	4	kW/MW
11	1	kVA	kVA L3	4	kVA/MVA
11	2		Ph.L3 ④		Label
11	3	kvar	kvar L3	4	kvar/Mvar
12	1		U.Unb		Label
12	3		Voltage unbalance	4	%
13	1		C.Unb		Label
13	3		Current unbalance	4	%

 Table 5-2 Displayed Parameters for the PM130P/PM130E

Page	Window	Indicator LED	Parameter <i>O</i>	Digits	Unit @
		 Min	/Max Measurements		
		MIN			
1	1	V1/V1-2	Min. real-time voltage L1/L12	4	V/kV
1	2	V2/V2-3	Min. real-time voltage L2/L23 ©	4	V/kV
1	3	V3/V3-1	Min. real-time voltage L3/L31 ©	4	V/kV
2	1	A1	Min. real-time current L1	4	A/kA
2	2	A2	Min. real-time current L2	4	A/kA
2	3	A3	Min. real-time current L3	4	A/kA
3	1	kVA	Min. real-time total kVA	4	kVA/MVA
3	2	PF	Min. real-time total power	4	
			factor		
3	3	kW	Min. real-time total kW	4	kW/MW
4	1	A NEUT	Min. real-time neutral current	4	A/kA
4	2	Hz	Min. real-time frequency	4	Hz
4	3	kvar	Min. real-time total kvar	4	kvar/Mvar
		MAX			
5	1	V1/V1-2	Max. real-time voltage L1/L12 ©	4	V/kV
5	2	V2/V2-3	Max. real-time voltage L2/L23 ©	4	V/kV
5	3	V3/V3-1	Max. real-time voltage L3/L31 6	4	V/kV
6	1	A1	Max. real-time current L1	4	A/kA
6	2	A2	Max. real-time current L2	4	A/kA
6	3	A3	Max. real-time current L3	4	A/kA
7	1	kVA	Max. real-time total kVA	4	kVA/MVA
7	2	PF	Max. real-time total power	4	
7	3	kW	Max. real-time total kW	4	kW/MW
8	1	A NEUT	Max. real-time neutral	4	A/kA
Q	2	Ц-7	Current Max real-time frequency	Л	Ц-7
8	2	kvar	Max real-time total kvar	+ 4	rı∠ kvar/Mvar
0	0				Nvai/ivival
9	1	V1	Max. volt demand L1/L126	4	V/kV
9	2	V2	Max. volt demand L2/L236	4	V/KV
9	3	V3	wax. voit demand L3/L316	4	V/KV

Page	Window	Indicator LED	Parameter <i>D</i>	Digits	Unit Ø
10	1	A1	Max, ampere demand I 1	4	A/kA
10	2	A2	Max. ampere demand L2	4	A/kA
10	3	A3	Max. ampere demand L3	4	A/kA
11	1	kVA	Max. sliding window kVA demand	4	kVA/MVA
11	2	PF	Power factor at max. kVA demand	4	
11	3	kW	Max. sliding window kW demand	4	kW/MW
			Total Energies 3 E		
1	1	MWh	Ac.En.		Label
1	2		IP.		Label
1	3		MWh import	5	MWh
2	1	Mvarh	rE.En.		Label
2	2		IP.		Label
2	3		Mvarh import	5	Mvarh
3	1	MVAh	AP.En.		Label
3	3		MVAh	5	MVAh
4	1	MWh	Ac.En.		Label
4	2		EP.	-	Label
4	3		Mivin export	5	MVVN
5	1	Mvarh	rE.En.		Label
5	2		EP. Myarb export	5	Label
5	5			5	wwarm
		<u>ا</u>			
6	1	wwn	AC.EN.		Label
6	2		MWh import I 1	5	MWh
7	1	Myarb	rE En	0	
7	2	wvalli	IP.L1		Label
7	3		Mvarh import L1	5	Mvarh
8	1	MVAh	AP.En.		Label
8	2		L1		Label
8	3		MVAh L1	5	MVAh
9	1	MWh	Ac.En.		Label
9	2		IP.L2		Label
9	3		MWh import L2	5	MWh
10	1	Mvarh	rE.En.		Label
10	2		IP.L2	-	Label
10	3		wvarh import L2	5	wvarh

Page	Window	Indicator LED	Parameter <i>O</i>	Digits	Unit Ø
11	1	MVAh	AP.En.		Label
11	2		L2		Label
11	3		MVAh L2	5	MVAh
12	1	MWh	Ac.En.		Label
12	2		IP.L3		Label
12	3		MWh import L3	5	MWh
13	1	Mvarh	rE.En.		Label
13	2		IP.L3		Label
13	3		Mvarh import L3	5	Mvarh
14	1	MVAh	AP.En.		Label
14	2		L3		Label
14	3		MVAh L3	5	MVAh

E available in the PM130E

- ② Voltage and current readings with a decimal point are displayed in kV and kA. Power readings with a decimal point are displayed in MW, Mvar, and MVA. When the value width is over the window resolution, the right most digits are truncated.
- ③ By default, the maximum range for energy readings is 99,999,999 MWh/Mvarh/MVAh. Beyond this value, the reading will roll over to zero. When the energy reading exceeds the window resolution, the right-most digits are truncated. To avoid truncation, you can change the energy roll value to lower limit via the User Selectable Options menu (see Section 4.7). Negative (exported) energy readings are displayed without a sign.
- ④ Per phase power and power factor readings are displayed only in 4LN3/4LL3 and 3LN3/3LL3 wiring modes (see Section 4.1) if the phase powers display is enabled in the *Display Setup* menu (see Section 4.6).
- S Phase energy readings are displayed only in 4LN3/4LL3 and 3LN3/3LL3 wiring modes if they are enabled in the User Selectable Options menu (see Section 4.7).
- When the 4LN3 or 3LN3 wiring mode is selected, the voltages will be lineto-neutral; for any other wiring mode, they will be line-to-line voltages.
- ⑦ Displayed only in the 4LN3 or 3LN3 wiring mode.

5.3 Self-Test Diagnostics Display

The *PM130* periodically performs self-test diagnostics during operation. If the instrument fails the test, it discards the last measurement results, and an error code is displayed for one second on all LEDs. Error codes are listed in Table 5-3. Code '8' indicates normal operation.

 $^{{\}rm }\odot{\rm }$ Display readings for all electrical quantities except Min/Max log and energies are sliding average values.

Frequent failures may be the result of excessive electrical noise in the region of the instrument. If the instrument continuously resets itself, contact your local distributor.

Table 5-3 Self-Test Diagnostic Codes

Code	Meaning
1	ROM error
2	RAM error
3	Watch dog timer reset
4	Sampling failure
5	Out of control trap
7	Timing failure
8	Normal power up
9	External reset (warm restart)

NOTE

The *PM130* provides a self-check alarm register accessible through communications that indicates possible problems with instrument hardware or setup configuration. The hardware problems are indicated by the appropriate bits which are set whenever the instrument fails self-test diagnostics or in the event of loss of power. The setup problems are indicated by the dedicated bit which is set when either configuration register is corrupted. In this event, your instrument will use the default configuration. For more information on the self-check alarm register, refer to the communications reference guides provided with your instrument.

Chapter 6 Viewing Status Information

Through the *Status Information Menu (STA)*, it is possible to view the status of various instrument features.

6.1 The Status Information Menu

SELECT → StA → ENTER

To enter the Status Information Menu:

- ✓ From the display mode, press[SELECT] to enter the Primary Selection Menu.
- ✓ Press **SELECT** to activate the **StA** window.
- ✓ Press ENTER .

To select a display page:

✓ Press the up/down arrow keys to scroll through the display pages.

To quit the menu and return to the display mode:

✓ Press ESC or ENTER .

Front Panel Display

When you are in the *Status Information Menu*, the front panel display is updated approximately four times per second and shows you a wide variety of status information that you can review by scrolling through display pages.

The status parameters are designated by the abbreviated labels in the upper and/or middle window. The upper window flashes, indicating that you are in the menu display.

Viewing and Clearing Alarms

Whenever a setpoint signals an alarm, it is latched to non-volatile memory and remains when the alarm condition disappears. Alarms which have occurred can be inspected and cleared all together through the *Status Information Menu*. When a number of alarms are present, use the up and down keys to scroll through all alarms.

To clear alarms:

✓ From the Status Information Menu, select either display page where an alarm is displayed. ✓ While holding the SELECT key, press and hold ENTER for about 5 seconds until the alarm trigger code displayed in the lower window changes to "none".

Fast Reset of Counters

When changing data via the front panel is not secured by a password, you can reset the counters from the *Status Information Menu* display without entering the reset menu:

- ✓ Select the page where the counter you want to reset is displayed.
- ✓ While holding the SELECT key, press and hold ENTER for about 5 seconds. The displayed data is reset to zero.

6.2 Status Display Formats

Table 6-1 lists all the displays available from the *Status Information Menu*. The display windows are labeled in the table as follows: 1 = upper window, 2 = middle window, 3 = lower window.

Ρ	available in the PM130P

Table 6-1 Status Information

E available in the PM130E

Page	Window	Parameter	Digits	Unit
1 1	1 2	PHAS PE rOt		Label Label
1	3	Phase rotation sequence (POS/NEG/ERR)	4	
2	1	rEL		Label
2	3	Relay status	1	
3	1	Cnt.1		Label
3	3	Counter #1	5	
4	1	Cnt.2		Label
4	3	Counter #2	5	
5	1	Cnt.3		Label
5	3	Counter #3	5	
6	1	Cnt.4		Label
6	3	Counter #4	5	
7	1	Port		Label
7	2	rd. Receiver status (flashing r	1	
7	2	while receiving data)	4	
	3	while transmitting data)	I	
8	1	Alar		Label
8	2	SP. Alarm setpoint number	4	
8	3	Alarm trigger code (see Table 4-5)	5	

Appendix: Technical Specifications

Input and Output Ratings

3 voltage inputs	690 V: (standard)	DIRECT INPUT - Nominal: 690V line-to-line voltage, 790V maximum; 400V line-to-neutral, 460V maximum - Burden: <0.5 VA INPUT USING PT - Burden: <0.15 VA					
	120 V: (optional)	INPUT USING PT - Nominal: 120V line-to-line voltage, 144V maximum - Burden: <0.1 VA					
3 current inputs (galvanicall	5A: (standard) y	INPUT VIA CT with 5A secondary output Burden: 2.5 to 4 mm ² (13-11 AWG) wire from CT Overload withstand: 15A RMS continuous, 250A RMS for 1 second					
isolated)	1A: (optional)	INPUT VIA CT with 1A secondary output Burden: 2.5 to 4 mm ² (13-11 AWG) wire from CT Overload withstand: 3A RMS continuous, 50A RMS for 1 second					
Voltage inp	ut terminals	UL recognized E129258 Maximum wire section: 4 mm ² (10 AWG)					
Optically iso communica	olated tion port	EIA RS-485 standard Maximum wire section: 2.5 mm ² (12 AWG)					
Relay outpu	ıt	Relay rated at 3A, 250 V AC / 3A, 30 V DC / 0.5A, 110 V DC Maximum wire section: 1.5 mm ² (14 AWG) 2 contacts (SPST Form A)					

Display	3 windows high-brightness 7-segment digit LEDs
	3 color LED bar graph 40-110%

Power Supply Galvanically isolated power supply (factory set) 120 or 230 V AC	Maximum wire section: 1.5 mm ² (14 AWG) 88-138V AC or 176-265V AC; 50/60 Hz; Burden: 5 VA
Environmental Cor	nditions
Operating temperature	-20°C to +60°C (-4°F to +140°F)
Storage temperature	-25°C to +80°C (-13°F to +176°F)
Humidity	0 to 95% non-condensing

Construction

Instrument body	Case enclosure: flame resistant ABS & Polycarbonate blend						
	Dimensions: 114.3 x 114.3 x 109 mm (4.5 x 4.5 x 4.29 ") Mounting: 4-inch round or 92x92mm square cut-out						
Instrument weight	0.70 kg (1.54 lb.)						

Standards Compliance

UL File # E129258

CE-EMC: 89/336/EEC as amended by 92/31/EEC and 93/68/EEC CE-LVD: 72/23/EEC as amended by 93/68/EEC and 93/465/EEC Harmonized standards to which conformity is declared: EN55011:1991; EN50082-1:1992; EN61010-1:1993; A2/1995

EN50081-2:1994 EMC Generic Emission Standard - Industrial Environment EN50082-2:1995 EMC Generic Immunity Standard - Industrial Environment EN55022: 1994 Class A EN61000-4-2: 1995 Electrostatic Discharge EN61000-4-4: 1995 Electrical Fast Transient EN61000-4-8: 1993 Power Frequency Magnetic Field ENV50140: 1993 Radio Frequency Electromagnetic Field, Amplitude Modulated ENV50204: 1995 (200Hz) Radio Frequency Electromagnetic Field, Pulse Modulated ENV50141: 1993 Radio Frequency Common Mode, Amplitude Modulated ANSI C37.90.1: 1989 Surge Withstand Capability ANSI C62.41 - 1991 Standard Surge

			Accuracy, %		uracy, %	Range	Display resolution (%Rdg) @	
Parameter Full scale		Rdg	FS	Conditions		@ range		
Voltage	120V×PT @ 120V 400V×PT @ 690V	For Ln reading and for 3OP2/3OP3 wiring modes		0.3	10% to 120% FS	0 to 999,000 V	1 V @ 1V to 9,999 V ≤0.1% @ 10,000 V to 999,000 V Starting voltage 1.5% FS	
	208V×PT @ 120V or 690V×PT @ 690V	For LL reading except 3OP2/3OP3 wiring modes						
Line current	CT PRIMARY CURRENT			0.3	2% to 150% FS	0 to 60,000 A	1 A @ 1A to 9,999 A ≤0.1% @ 10,000 A to 60,000 A Starting current 0.75% FS	
Active power	0.36×PT×CT @ 120V input 1.2×PT×CT @ 690V input			0.5	PF ≥0.5 ①	-2,000,000 to +2,000,000 kW	1 kW @ 1kW to 9,999 kW ≤0.1% @ 10 MW to 2,000 MW	
Reactive power	0. 36×PT×CT @ 120V input 1.2×PT×CT @ 690V input			0.5	PF ≤0.9 ①	-2,000,000 to +2,000,000 kvar	1 kvar @ 1kvar to 9,999 kvar ≤0.1% @ 10 Mvar to 2,000 Mvar	
Apparent power	0. 36×PT×CT @ 120V input 1.2×PT×CT @ 690V input			0.5	PF ≥0.5 ①	0 to 2,000,000 kVA	1 kVA @ 1kVA to 9,999 kVA ≤0.1% @ 10 MVA to 2,000 MVA	
Power factor	1			1	PF ≥ 0.5, U ≥ 10% FSU I ≥ 10% FSI	-0.999 to +1.000	0.001	
Frequency			0.1			45.00 to 65.00 Hz	0.01 Hz	

Measurement Specifications

Appendix: Technical Specifications

			Accuracy, %		Range	Display resolution (%Rdg) ②
Parameter	Full scale	Rdg	FS	Conditions		@ range
Neutral	CT PRIMARY CURRENT		0.6	2% to 150% FS	0 to 60,000 A	1 A @ 1A to 9,999 A
(unbalanced)						≤0.1% @ 10,000 A to 60,000 A
current						
Ampere demand				same as for	current	
kW demand (block	(& sliding)			same as	for kW	
kVA demand (bloc	ck & sliding)	T		same as	s for kVA	
Active energy		accord	ding to	power accuracy (0 to 99,999 MWh	1 kWh @ 1 to 99,999 kWh
Import & Export						10 kWh @ 100.00 to 999.99 MWh
						100 kWh @ 1000.0 to 9999.9 MWh
						1MWh @ 10.0 to 99.99 GWh
Reactive energy		accord	ding to	power accuracy 🤅	0 to 99,999 Mvarh	1 kvarh @ 1 to 99,999 kvarh
Import & Export						10 kvarh @ 100.00 to 999.99 Mvarh
						100 kvarh @ 1000.0 to 9999.9
						Mvarh
						1Mvarh @ 10.000 to 99.999
						Gvarh
Apparent energy		accord	ding to	power accuracy 🤅	0 to 99,999 MVAh	1 kVAh @ 1 to 99,999 kVAh
						10 kVAh @ 100.00 to 999.99
						MVAh
						100 kVAh @ 1000.0 to 9999.9
						MVAh
						1MVAh @ 10.000 to 99.999
						GVAh

Key:

- PT = external potential transformer ratio FSU = voltage full scale CT, CT Primary Current = primary current rating of external current transformer FSI = current full scale
- 0 @ 10% to 120% of voltage FS and 2% to 150% of current FS
- 2 Higher resolution is achievable via communications
- \odot Where the current is > 10% FS, the energy accuracy is better than 1.5% Rdg.

Additional Notes

- 1. Accuracy is expressed as ± (percentage of reading + percentage of full scale) ± 1 digit. This does not include inaccuracies introduced by the user's potential and current transformers.
- 2. Specifications assume a reference temperature of 20 26 °C.
- 3. Specifications for kvar, kVA and PF assume voltage and current waveforms with THD $\leq 5\%$
- 4. Ordinary measurement error is considerably less than the specified accuracy which indicates maximum error.

Index

accuracy, 47 active energy, 46 active power, 45 ampere demand, v, 20, 25, 35, 38 analog outputs, 20 basic setup, 19 burden. 43 communications, 47 CT, v, 9, 20, 32, 43, 45, 46, 47 CT PRIMARY CURRENT, 20, 45, 46, 47 current inputs, 43 current transformers. 47 demand, v, 20, 25, 26, 34, 35, 37, 38, 46 demand period, v. 20 display, 1, 27, 28, 29, 31, 32, 33, 34, 41, 42 display mode, 31, 34, 41, 42 energy, 1, 22, 29, 33, 34, 39, 46, 47 external synchronization, v, 20 frequency, 45 inputs, 43 Load bar graph, 32 measurement, 47 menu, 17, 19, 21, 22, 23, 24, 27, 28, 29, 30, 31, 39, 41

Modbus, ii, v, 16, 21 mounting, 1, 6 open delta, v, 11, 19, 20 overload withstand, 43 password, 17, 30, 31, 34, 42 PComTest, v, 19 power, i, v, 1, 8, 20, 27, 29, 33, 34, 36, 37, 38, 39, 40, 45, 46 power demand, v, 20 power factor, 45 power source, i. 8 power supply, 43 PT, v, 11, 20, 43, 45, 47 PT RATIO, 20 pulsing, 22, 24, 27 reactive energy, 46 reactive power, 29, 45 relays, 22 reset, v. 20, 31, 34, 40, 41, 42 self tests, 39 setpoints, 20, 23, 24 setup mode, 17 standards. 43 status, 1, 17, 26, 30, 41, 42 technical specifications, 43 terminals, ii, 8, 43 voltage inputs, 43 wiring configuration, 11 Wye, v, 19, 20