

expertmeter™ PM180

PM180 Series SUBSTATION AUTOMATION UNIT

OPERATION MANUAL

BG0525 Rev. A7

LIMITED WARRANTY

The manufacturer offers the customer a 24-month functional warranty on the instrument for faulty workmanship or parts from date of dispatch from the distributor. In all cases, this warranty is valid for 36 months from the date of production. This warranty is on a return to factory basis.

The manufacturer does not accept liability for any damage caused by instrument malfunction. The manufacturer accepts no responsibility for the suitability of the instrument to the application for which it was purchased.

Failure to install, set up or operate the instrument according to the instructions herein will void the warranty.

Only a duly authorized representative of the manufacturer may open your instrument. The unit should only be opened in a fully anti-static environment. Failure to do so may damage the electronic components and will void the warranty.

The greatest care has been taken to manufacture and calibrate your instrument. However, these instructions do not cover all possible contingencies that may arise during installation, operation or maintenance, and all details and variations of this equipment are not covered by these instructions.

For additional information regarding installation, operation or maintenance of this instrument, contact the manufacturer or your local representative or distributor.

WARNING

Read the instructions in this manual before performing installation, and take note of the following precautions:

- Ensure that all incoming AC power and other power sources are turned OFF before performing any work on the instrument. Failure to do so may result in serious or even fatal injury and/or equipment damage.
- Before connecting the instrument to the power source, check the labels on the back of the instrument to ensure that your instrument is equipped with the appropriate power supply voltage, input voltages and currents.
- Under no circumstances should the instrument be connected to a power source if it is damaged.
- To prevent potential fire or shock hazard, do not expose the instrument to rain or moisture.
- The secondary of an external current transformer must never be allowed to be open circuit when the primary is energized. An open circuit can cause high voltages, possibly resulting in equipment damage, fire and even serious or fatal injury. Ensure that the current transformer wiring is secured using an external strain relief to reduce mechanical strain on the screw terminals, if necessary.
- Only qualified personnel familiar with the instrument and its associated electrical equipment must perform setup procedures.
- Do not open the instrument under any circumstances when it is connected to a power source.
- Do not use the instrument for primary protection functions where failure of the device can cause fire, injury or death. The instrument can only be used for secondary protection if needed.

Read this manual thoroughly before connecting the device to the current carrying circuits. During operation of the device, hazardous voltages are present on input terminals. Failure to observe precautions can result in serious or even fatal injury or damage to equipment.

All trademarks are property of their respective owners.

Apr 2019 Copyright 2010-2019 © SATEC Ltd.

Table of Contents

Chapter 1 Introduction	7
expertmeter™ PM180 Features	7
AC/DC Inputs	9
Digital and Analog I/O module Options	9
Communications Options	9
Remote Displays	
Upgradeable Firmware	
Device Models	
Firmware Versions	
Supplemental Documents	12
Chapter 2 Device Description	13
Controls and Indicators	13
Device Controls	13
Indicator LEDs	13
Modes of Operation	13
Operational Mode	
Energy Test Mode	
Service Mode	
Diagnostics Mode	
Communicating with the PM180	
COM1-COM3 Serial Communications (standard)	14
COM4 Infrared Port (optional)	
COM5 Port (optional)	
USB Port (standard)	
Ethernet Port (standard)	
Ethernet Port (optional)	
CELLULAR Port (optional)	
Using the RDM and RGM.	
Using PAS	
Device Inputs	16
AC Inputs	
VDC Input	
Digital Inputs	
Analog Inputs	
Device Outputs	17
Analog Outputs	
Relay Outputs	
Metering	
RMS Measurements	
RMS Trace	
Harmonic Measurements	
Aggregation Intervals	
Demands	
Energy Metering	
Instrument Transformer Correction	
Monitoring	
Substation Battery	
Memory Backup Battery	

	Power Supply	23
	Logical Controller	23
	Recording	23
	Event Recorder	23
	Sequence-of-Events Recorder	24
	Power Quality Recorder	
	Fault Recorder	
	Fast Transient Recorder	
	Phasor Measurement Unit - PMU	
	Measuring Techniques	
	PMU Communications	
	Time Synchronization	
	Device Diagnostics	
	-	
С	hapter 3 Using the RDM	.32
	Connecting the RDM	32
	Data Display	32
	Navigation Keys	
	Common Measurements Display	
	Min/Max and Max. Demand Display	
	Power Quality Display	
	Energy Display	
	Status Information Display	
	Using the Menus	
	Navigation Keys	
	Selecting Menus	
	Entering a Password	
	Entering Numbers	
	Configuring the RDM	
	Configuring the PM180	
	Clock Setup Menu	
	Basic Setup Menu	
	•	
	Demand Setup Menu	
	Communication Setup Menus	
	Device Options Menu	
	Reset Menu	
С	hapter 4 Using Telnet	.46
	Connecting to the Device	46
	Running Telnet from HyperTerminal	46
	Running the Telnet Client on Windows XP and other	47
	Opening a Telnet Session	47
	Closing a Telnet Session	
C	hapter 5 Using PAS	10
C		
	Installing PAS	
	Installing the USB Driver	
	Windows XP Installation	
	Creating a New Site for your Device	
	Setting up Communications	
	Communicating through a Serial Port	
	Communicating through a Modem (future)	
	Communicating through the Internet	53

Communicating through a CELLULAR (GPRS-2G or 3G) Modem	53
Communicating through a USB	
Setting Up the Device	54
Creating Setups for the Device	
Copying Setups to the Device Database	
Downloading Setup to the Device	55
Uploading Setup from the Device	55
Chapter 6 Programming the PM180	56
Authorization	
Changing Port Settings	
Setting Up Communication Ports	
Setting Up the ETHERNET - Local Network	
Setting-Up CELLULAR - Public Network	
Setting-Up SNTP Client	
Configuring eXpertPower Client	
Basic Device Setup	
Device Options	
Instrument Transformer Correction Setup	
Local Settings	
Configuring Digital Inputs	
Programming Relay Outputs	
Programming Analog Inputs	
Programming Analog Outputs	
Using Counters	
Using Periodic Timers	
Using Control Setpoints	
•	
Configuring the PMU IEC 61850 SV publisher	80
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2	80 82
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2 Chapter 7 Configuring Recorders	80 82 84
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2 Chapter 7 Configuring Recorders Configuring Device Memory	80 82 84 84
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2 Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder	80 82
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2 Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder Configuring the Sequence-of-Events Recorder	
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2 Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder	
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2 Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder Configuring the Event Recorder Configuring the Sequence-of-Events Recorder Configuring the Data Recorder Conventional Data Log Files	
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2 Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder Configuring the Event Recorder Configuring the Sequence-of-Events Recorder Configuring the Data Recorder Conventional Data Log Files Factory Preset Periodic Data Logs	
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2 Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder Configuring the Event Recorder Configuring the Sequence-of-Events Recorder Configuring the Data Recorder Conventional Data Log Files Factory Preset Periodic Data Logs IEC 61000-4-30 Profile Data log	
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2 Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder Configuring the Event Recorder Configuring the Sequence-of-Events Recorder Configuring the Data Recorder Conventional Data Log Files Factory Preset Periodic Data Logs IEC 61000-4-30 Profile Data log Factory Preset Fault and PQ Data Logs	
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2. Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder Configuring the Sequence-of-Events Recorder Configuring the Data Recorder Configuring the Data Recorder Conventional Data Log Files Factory Preset Periodic Data Logs IEC 61000-4-30 Profile Data log Factory Preset Fault and PQ Data Logs TOU Profile Data Log Files	80 82 84 84 84 86 87 89 89 90 90 91 94 94
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2 Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder Configuring the Event Recorder Configuring the Sequence-of-Events Recorder Configuring the Data Recorder Configuring the Data Recorder Conventional Data Log Files Factory Preset Periodic Data Logs IEC 61000-4-30 Profile Data log Factory Preset Fault and PQ Data Logs TOU Profile Data Log Files Configuring the Waveform Recorder	80 82 84 84 84 86 87 89 89 90 90 91 94 94 95
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2 Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder Configuring the Sequence-of-Events Recorder Configuring the Data Recorder Conventional Data Log Files Factory Preset Periodic Data Logs IEC 61000-4-30 Profile Data log Factory Preset Fault and PQ Data Logs TOU Profile Data Log Files Configuring the Waveform Recorder Configuring the IEEE 1159 Power Quality Recorder	80 82 84 84 84 86 87 89 89 90 90 90 91 94 94 94 95 96
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2 Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder Configuring the Sequence-of-Events Recorder Configuring the Data Recorder Conventional Data Log Files Factory Preset Periodic Data Logs IEC 61000-4-30 Profile Data log Factory Preset Fault and PQ Data Logs TOU Profile Data Log Files Configuring the Waveform Recorder Configuring the IEEE 1159 Power Quality Recorder Configuring the EN50160 Power Quality Recorder	80 82 84 84 84 86 87 89 89 90 90 91 91 94 94 94 94 99 99
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2. Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder Configuring the Sequence-of-Events Recorder Configuring the Data Recorder Configuring the Data Recorder Conventional Data Log Files Factory Preset Periodic Data Logs IEC 61000-4-30 Profile Data log Factory Preset Fault and PQ Data Logs TOU Profile Data Log Files Configuring the Waveform Recorder Configuring the IEEE 1159 Power Quality Recorder Configuring the EN50160 Power Quality Recorder EN50160 Background	80 82 84 84 84 86 87 89 89 90 90 91 91 94 94 94 94 99 99
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2 Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder Configuring the Sequence-of-Events Recorder Configuring the Data Recorder Conventional Data Log Files Factory Preset Periodic Data Logs IEC 61000-4-30 Profile Data log Factory Preset Fault and PQ Data Logs TOU Profile Data Log Files Configuring the Waveform Recorder Configuring the IEEE 1159 Power Quality Recorder Configuring the EN50160 Power Quality Recorder EN50160 Background Evaluation Techniques	80 82 84 84 84 86 87 89 90 90 91 90 91 94 94 94 94 94 94 99 99
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2. Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder Configuring the Sequence-of-Events Recorder Configuring the Data Recorder Conventional Data Log Files Factory Preset Periodic Data Logs IEC 61000-4-30 Profile Data log Factory Preset Fault and PQ Data Logs TOU Profile Data Log Files Configuring the Waveform Recorder Configuring the IEEE 1159 Power Quality Recorder Configuring the EN50160 Power Quality Recorder EN50160 Background Evaluation Techniques Methods of Evaluation	80 82 84 84 84 88 89 89 90 90 90 91 94 94 94 94 99 99 99 99 100 101
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2 Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder Configuring the Sequence-of-Events Recorder Configuring the Data Recorder Conventional Data Log Files Factory Preset Periodic Data Logs IEC 61000-4-30 Profile Data log Factory Preset Fault and PQ Data Logs TOU Profile Data Log Files Configuring the Waveform Recorder Configuring the IEEE 1159 Power Quality Recorder Configuring the EN50160 Power Quality Recorder EN50160 Background Evaluation Techniques Methods of Evaluation Configuring the EN50160 Recorders	80 82 84 84 84 86 87 89 90 90 91 90 91 94 94 94 94 94 99 99 99 100 101
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2 Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder Configuring the Sequence-of-Events Recorder Configuring the Data Recorder Configuring the Data Recorder Conventional Data Log Files Factory Preset Periodic Data Logs IEC 61000-4-30 Profile Data log Factory Preset Fault and PQ Data Logs TOU Profile Data Log Files Configuring the Waveform Recorder Configuring the Waveform Recorder Configuring the IEEE 1159 Power Quality Recorder Configuring the EN50160 Power Quality Recorder EN50160 Background Evaluation Techniques Methods of Evaluation Configuring the EN50160 Recorders EN50160 PQ Recorder Setup	80 82 84 84 84 86 87 89 90 90 91 90 91 94 94 94 94 94 99 99 100 101 106 106
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2 Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder Configuring the Sequence-of-Events Recorder Configuring the Data Recorder Configuring the Data Recorder Conventional Data Log Files Factory Preset Periodic Data Logs IEC 61000-4-30 Profile Data log Factory Preset Fault and PQ Data Logs TOU Profile Data Log Files Configuring the Waveform Recorder Configuring the UEEE 1159 Power Quality Recorder Configuring the EN50160 Power Quality Recorder EN50160 Background Evaluation Techniques Methods of Evaluation Configuring the EN50160 Recorders EN50160 PQ Recorder Setup EN50160 Harmonics Limits Setup	80 82 84 84 84 86 87 89 90 90 90 91 90 91 94 94 94 94 94 95 99 99 100 101 106 106 108
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2 Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder Configuring the Sequence-of-Events Recorder Configuring the Data Recorder Configuring the Data Recorder Conventional Data Log Files Factory Preset Periodic Data Logs IEC 61000-4-30 Profile Data log Factory Preset Fault and PQ Data Logs TOU Profile Data Log Files Configuring the Waveform Recorder Configuring the IEEE 1159 Power Quality Recorder Configuring the IEEE 1159 Power Quality Recorder Configuring the EN50160 Power Quality Recorder EN50160 Background Evaluation Techniques Methods of Evaluation Configuring the EN50160 Recorders EN50160 PQ Recorder Setup EN50160 Harmonics Limits Setup EN50160 Advanced Setup	80 82 84 84 84 88 89 90 90 90 91 90 91 94 94 94 95 99 99 99 100 101 101 106 106 108 109
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2. Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder Configuring the Sequence-of-Events Recorder Configuring the Data Recorder Configuring the Data Recorder Conventional Data Log Files. Factory Preset Periodic Data Logs IEC 61000-4-30 Profile Data log Factory Preset Fault and PQ Data Logs TOU Profile Data Log Files Configuring the Waveform Recorder Configuring the IEEE 1159 Power Quality Recorder Configuring the IEEE 1159 Power Quality Recorder Configuring the EN50160 Power Quality Recorder EN50160 Background Evaluation Techniques Methods of Evaluation Configuring the EN50160 Recorders. EN50160 PQ Recorder Setup EN50160 Harmonics Limits Setup EN50160 Advanced Setup Clearing EN50160 Evaluation Counters	80 82 84 84 84 84 86 87 89 90 90 90 91 90 91 94 94 94 94 94 99 99 100 101 101 106 106 108 109 110
Configuring the PMU IEC 61850 SV publisher Configuring IEEE C37.118.2 Chapter 7 Configuring Recorders Configuring Device Memory Configuring the Event Recorder Configuring the Sequence-of-Events Recorder Configuring the Data Recorder Configuring the Data Recorder Conventional Data Log Files Factory Preset Periodic Data Logs IEC 61000-4-30 Profile Data log Factory Preset Fault and PQ Data Logs TOU Profile Data Log Files Configuring the Waveform Recorder Configuring the IEEE 1159 Power Quality Recorder Configuring the IEEE 1159 Power Quality Recorder Configuring the EN50160 Power Quality Recorder EN50160 Background Evaluation Techniques Methods of Evaluation Configuring the EN50160 Recorders EN50160 PQ Recorder Setup EN50160 Harmonics Limits Setup EN50160 Advanced Setup	80 82 84 84 84 84 86 87 89 90 90 90 91 90 91 94 94 94 94 94 94 94 95 99 99 100 101 101 106 106 108 108 109

Fault Location calculations results	115
Chapter 8 Totalization Energy and TOU Registers	
Configuring Summary and Billing/TOU Registers	
Configuring TOU Daily Profiles	
Configuring TOU Calendar	119
Chapter 9 Configuring Communication Protocols	121
Configuring MODBUS	
MODBUS Point Mapping	
Changing Raw Scales for 16-bit Registers	
Configuring DNP3	
DNP Options	122
Configuring DNP Class 0	123
Configuring DNP Event Classes	
Configuring IEC 60870-5	
Configuring IEC 60870-5 Options	
Remapping Point Addresses and Event Reporting	
Configuring Class 2 Data and Counter Transmission	
Chapter 10 Device Control	132
Authorization	132
Remote Relay Control	132
Device Event Flags	
Viewing and Clearing Device Diagnostics	
Updating the Clock	
Resetting Accumulators and Clearing Log Files	
Upgrading Meter Firmware	
Chapter 11 Monitoring Devices	
Viewing Real-time Data	136
Viewing Real-time Data	136 136
Viewing Real-time Data Organizing Data Sets Polling Devices	136 136 136
Viewing Real-time Data Organizing Data Sets Polling Devices Viewing a Data Table.	136
Viewing Real-time Data Organizing Data Sets Polling Devices Viewing a Data Table Viewing Data Trend	136 136 136 137 138
Viewing Real-time Data Organizing Data Sets Polling Devices Viewing a Data Table Viewing Data Trend Saving Data to a File	136 136 136 137 138 139
Viewing Real-time Data Organizing Data Sets Polling Devices Viewing a Data Table Viewing Data Trend Saving Data to a File Printing Data	
Viewing Real-time Data Organizing Data Sets. Polling Devices. Viewing a Data Table. Viewing Data Trend. Saving Data to a File Printing Data Copying Data	136 136 136 137 138 138 139 139 139
Viewing Real-time Data Organizing Data Sets Polling Devices Viewing a Data Table Viewing Data Trend Saving Data to a File Printing Data	136 136 136 137 138 139 139 139 139 139
Viewing Real-time Data Organizing Data Sets Polling Devices Viewing a Data Table Viewing Data Trend Saving Data to a File Printing Data Copying Data Real-time Data Logging	
Viewing Real-time Data Organizing Data Sets Polling Devices Viewing a Data Table Viewing Data Trend Saving Data to a File Printing Data Copying Data Real-time Data Logging Viewing Real-time Min/Max Log Viewing Real-time Waveforms	
Viewing Real-time Data Organizing Data Sets Polling Devices Viewing a Data Table Viewing Data Trend Saving Data to a File Printing Data Copying Data Real-time Data Logging Viewing Real-time Min/Max Log Viewing Real-time Waveforms Chapter 12 Retrieving Recorded Files	
Viewing Real-time Data Organizing Data Sets. Polling Devices. Viewing a Data Table. Viewing Data Trend. Saving Data to a File . Printing Data . Copying Data . Real-time Data Logging . Viewing Real-time Min/Max Log . Viewing Real-time Waveforms. Chapter 12 Retrieving Recorded Files. Uploading Files on Demand.	
Viewing Real-time Data Organizing Data Sets Polling Devices Viewing a Data Table Viewing Data Trend Saving Data to a File Printing Data Copying Data Real-time Data Logging Viewing Real-time Min/Max Log Viewing Real-time Waveforms Chapter 12 Retrieving Recorded Files Uploading Files on Demand Using the Upload Scheduler	
Viewing Real-time Data Organizing Data Sets. Polling Devices. Viewing a Data Table. Viewing Data Trend. Saving Data to a File . Printing Data . Copying Data . Real-time Data Logging . Viewing Real-time Min/Max Log . Viewing Real-time Waveforms. Chapter 12 Retrieving Recorded Files. Uploading Files on Demand.	
Viewing Real-time Data Organizing Data Sets Polling Devices. Viewing a Data Table. Viewing Data Trend. Saving Data to a File Printing Data Copying Data Real-time Data Logging Viewing Real-time Min/Max Log Viewing Real-time Waveforms Chapter 12 Retrieving Recorded Files. Uploading Files on Demand. Using the Upload Scheduler Retrieving EN50160 Statistics Files. Viewing Historical Data On-line.	
Viewing Real-time Data Organizing Data Sets Polling Devices Viewing a Data Table Viewing Data Trend Saving Data to a File Printing Data Copying Data Copying Data Real-time Data Logging Viewing Real-time Min/Max Log Viewing Real-time Waveforms Chapter 12 Retrieving Recorded Files Uploading Files on Demand Using the Upload Scheduler Retrieving EN50160 Statistics Files Viewing Historical Data On-line Chapter 13 Viewing Log Files	
Viewing Real-time Data Organizing Data Sets Polling Devices Viewing a Data Table Viewing Data Trend Saving Data to a File Printing Data Copying Data Real-time Data Logging Real-time Data Logging Viewing Real-time Min/Max Log Viewing Real-time Waveforms Chapter 12 Retrieving Recorded Files Uploading Files on Demand Using the Upload Scheduler Retrieving EN50160 Statistics Files Viewing Historical Data On-line Chapter 13 Viewing Log Files General Operations	
Viewing Real-time Data	
Viewing Real-time Data Organizing Data Sets Polling Devices Viewing a Data Table Viewing Data Trend Saving Data to a File Printing Data Copying Data Real-time Data Logging Real-time Data Logging Viewing Real-time Min/Max Log Viewing Real-time Waveforms Chapter 12 Retrieving Recorded Files Uploading Files on Demand Using the Upload Scheduler Retrieving EN50160 Statistics Files Viewing Historical Data On-line Chapter 13 Viewing Log Files General Operations	
Viewing Real-time Data Organizing Data Sets Polling Devices. Viewing a Data Table. Viewing Data Trend. Saving Data to a File Printing Data Copying Data	

Viewing the	Event Log	144
Viewing the	IEC 61000-4-30 Profile log file	146
	Sequence-of-Events Log.	
Viewing the	Power Quality Event Log	148
Viewing the IT	I (CBEMA) Curve	149
Viewing the	IEEE 1159 Statistics Report	150
Viewing EN5	0160 Statistics Reports	152
Viewing the EN	I50160 Compliance Report	152
Viewing the EN	I50160 Online Statistics Report	155
Viewing the EN	I50160 Harmonics Survey Report	155
Viewing the	Fault Log	155
Viewing the	Data Log	156
Viewing Data T	Frend	157
Viewing Way	/eforms	158
Viewing an RM	S Plot	159
Viewing a Freq	uency Plot	160
	trum Chart	
	trum Table	
•	ions	
Viewing Syn	chronized Waveforms	165
Chapter 14	COMTRADE and PQDIF Converters	
-	verting	
Automatic C	onverting	166
Appendix A	Parameters for Analog Output	168
Appendix B	Setpoint Actions	170
Appendix C	Parameters for Monitoring and Data Logging	171
Appendix D	EN50160 Statistics Log Files	189
Appendix E	Data Scales	193
Appendix F	Device Diagnostic Codes	194

Chapter 1 Introduction

expertmeter[™] PM180 Features

The expertmeter[™] PM180 Series intelligent electronic devices (IED) in a 3U standard form factor design, are combined fault-recording, metering and control devices that provide a complete solution for substation and industrial automation. They incorporate a unique collection of features commonly found in numerous specialized measurements and recording equipment utilized in substation and industrial environments. Although the devices are primarily designed as an inexpensive add-on to expand the capabilities of the existing substation protection equipment, they are well suited for a wide range of industrial applications with high input currents whenever extensive power quality monitoring is required. The PM180 combines in a single enclosure:

- Fast Digital Fault recorder: up to 48 external digital triggers from protection relays; onboard fault detector; programmable fault thresholds and hysteresis; up to 100 Amp fault currents, zero-sequence currents and volts, current and voltage unbalance; ready-for-use fault reports - fault current magnitudes and duration, coincident volt magnitude, fault waveforms and fast RMS trace; cross triggering between multiple devices via digital inputs for synchronous fault capture and recording.
- Sequence-of-Events recorder: up to 48 digital inputs at 1-ms resolution, fault events and relay operations.
- IEEE 1159 Power Quality recorder: onboard power quality analyzer; programmable thresholds and hysteresis; IEEE 1159 PQ event log; ready-for-use reports; impulsive transients, sags/swells, interruptions, harmonics, inter-harmonics, frequency variation, voltage unbalance, optional IEC 61000-4-15 flicker.
- EN 50160 Power Quality recorder: onboard power quality analyzer; programmable limits; EN 50160 power quality event log, EN 50160 compliance statistics; EN 50160 harmonics survey statistics; ready-for-use compliance statistics reports; power frequency, voltage variations, rapid voltage changes, IEC 61000-4-15 flicker, voltage dips, interruptions, temporary Overvoltages, transient Overvoltages, voltage unbalance, IEC 61000-4-7 harmonic and Interharmonic voltage, mains signaling voltage.
- GOST13109-97 or GOST 32144-2013 (Russian Power Quality standard) onboard power quality analyzer; programmable thresholds and hysteresis; ready-for use reports)
- Event recorder for logging internal diagnostics events, control events and I/O operations.
- Eight Fast Waveform recorders: 56-channel simultaneous recording with 7 AC, one AC/DC and 48 digital input channels; optional 32-channel recording with 7 AC, one AC/DC, 16 digital and 8 fast analog input channels;

selectable AC sampling rate of 32, 64, 128 or 256 samples per cycle; 20 pre-fault cycles, 1-ms resolution for digital inputs; synchronized waveforms from multiple devices in a single plot; exporting waveforms in COMTRADE and PQDIF file formats.

- Sixteen Fast Data recorders: 1/2-cycle to 2-hour RMS envelopes; up to 20
 pre-fault and post-fault cycles; programmable data logs on a periodic basis
 and on any internal and external trigger; triggering from the Fault recorder,
 PQ recorder or control setpoints; exporting data trends in PQDIF file format.
- Embedded Programmable Controller: 64 control setpoints, OR/AND logic, extensive triggers, programmable thresholds and delays, relay control, event-driven data recording, cross triggering between multiple devices via the Ethernet for synchronous event capture and recording – up to sixteen triggering channels.
- High-Class 3-phase Power meter: true RMS, volts, amps, powers, power factors, unbalance, and neutral current.
- Demand Meter: amps, volts, harmonic demands.
- Precise Energy and Power Demand Meter: Time-of-Use (TOU), 16 Summary (totalization) and TOU energy and demand registers for substation energy management; accumulation of energy pulses from external watt-meters; block and sliding demands; up to 64 energy sources.
- Harmonic Analyzer: up to 63rd harmonic volts and amps; directional power harmonics and power factor; phasor, symmetrical components.
- Fault recorder with up to 40 x In fault capture
- Distance to Fault fault location, using PAS™
- 32 digital counters for counting pulses from external sources and internal events.
- 16 programmable timers from 1/2 cycle to 24 hours for periodic recording and triggering operations on a time basis.
- 1-ms satellite-synchronized clock (IRIG-B time-code input¹).
- Backup power supply unit.
- 3 slots for "hot-swap" plug-in I/O/COM modules.
- 2-Mbyte non-volatile memory with battery backup; 256-Mbyte FLASH Memory for long-term waveform and data recording.

¹ PM180 N3 Version is equipped with IRIG-B synchronization port as standard

AC/DC Inputs

The PM180 is provided with a set of fully isolated AC/DC inputs for connecting to the AC feeders or station battery:

- Three isolated AC voltage inputs (up to 690VAC direct line-to-line input voltage)
- Four standard isolated AC current inputs with an extended input range up to 2000% overload (In = 5A input currents, to 100 Amps fault currents)
- Four optional additional isolated AC current inputs with an extended input range up to 4000% overload (In = 5A input currents, to 200 Amps fault currents)
- One AC/DC voltage input (up to 400VAC/300VDC) for monitoring the station battery

Digital and Analog I/O module Options

The PM180 has three I/O expansion slots for hot-swap plug-in I/O modules. The following I/O options are available:

- 16 DI x 3 up to three 16-channel digital input modules: 16 optically isolated inputs per module; options for dry contacts, 10-30V, 20-250V wet inputs; programmable de-bounce time from 1 ms to 1 sec; free linkage to Sequence-of-Events recorder, Fault recorder, control setpoints, pulse counters and Energy/TOU subsystem.
- 8 RO x 3 up to three 8-channel relay output modules: eight relays per module; unlatched, latched and pulse operations, failsafe operation for alarm notifications; programmable pulse width; direct remote relay control through communications.
- 4 Al/AO x 2 up to two combined 4-channel Al/AO modules: four optically isolated analog inputs and four analog outputs per module with internal power supply; options for 0-1mA, ±1mA, 0-20mA, 4-20mA, 0-50mA and ± 10V inputs and outputs; 200% overload currents for 0-1mA and ±1mA Al/AO (0-2 mA and ±2 mA ranges are available).

Communications Options

The PM180 has extensive communications capabilities:

Standard communication ports

- Three independent universal serial communications ports (RS-232/485¹ and RS-485, up to 115,200 bps, MODBUS RTU/ASCII, DNP3.0 and IEC 60870-5-101 protocols)
- Infrared port (MODBUS RTU/ASCII and DNP3.0 protocols)
- Ethernet 10/100Base-T port (MODBUS/TCP, DNP3.0/TCP, IEC 60870-5-104 and IEC 61850 protocols (up to five non-intrusive simultaneous connections, Telnet service port)
- USB 1.1 port (MODBUS RTU protocol, 12 Mbps) for fast local communications and data retrieving

Optional communication ports

The PM180 has three expansion slots for hot-swap plug-in communication modules. In addition, each COM module is equipped with a serial RS-422/485 communication port. The following COM module options are available:

- Embedded 56K modem for communications through public telephone lines (MODBUS RTU/ASCII and DNP3.0 protocols) - *future*
- Embedded Cellular modem for communication through public cellular network (MODBUS/TCP and DNP3.0/TCP)
- 10/100Base TX or 100Base FX (optical port) backup Ethernet port (MODBUS/TCP, DNP3.0/TCP, IEC 60870-5-104 and IEC 61850 protocols, up to five non-intrusive simultaneous connections, Telnet service port)
- IEEE 802.11b/g backup wireless Ethernet port WiFi (MODBUS/TCP, DNP3.0/TCP and IEC 61850 protocols, up to five non-intrusive simultaneous connections, Telnet service port) - *future*
- PROFIBUS DP *future*
- IRIG-B for GPS time synchronization

Remote Displays

The PM180 can be ordered with a LED Remote Display Module (RDM180) or an LCD Remote Graphical Module (RGM180). Both have a fast RS-485 port and communicate with the PM180 via the MODBUS RTU protocol. Remote displays can be located at distances of up to 0.5 km from the device. The RGM180 can be ordered with an Ethernet 10/100Base-T port to communicate with the PM180 over a local network.

The RDM180 has two four-digit and one six-digit windows with bright red LEDs well suited for dark areas. It allows the user to view real-time RMS and harmonics measurements, status indication parameters, and perform basic setup operations when installing and servicing the device.

¹ RS-485 only in PM180 N3 Version

The RGM180 is equipped with a TFT color graphics LCD display with Touch Panel and has extensive dialog capabilities, allowing the user to view different fault and power quality information in a graphical form, such as waveforms, harmonic spectrum, phasors and data trends, review latest fault and power quality reports for fast fault analysis, and much more.

Upgradeable Firmware

The PM180 uses flash memory for storing device firmware. This allows upgrading of your device without replacing hardware components. New features can be easily added to your device by simply replacing firmware through any communication port.

Device Models

The expertmeter™ PM180 Series includes two models:

- Power quality models are available with either an IEEE 1159 power quality option (standard), or an EN 50160 (special order) or a GOST13109 or GOST 32144-2013 compliance statistics options.
- Each model option above can be ordered with Substation Automation System protocol IEC 61850

Firmware Versions

Use the following firmware references to check your device's options:

- V31.X4.XX Basic fault + IEEE 1159 power quality recorder + IEC 61000-4-15 flicker
- V31.X5.XX Basic fault + EN 50160¹ power quality recorder
- V31.X7.XX Basic Fault + GOST13109-97 + Flicker IEC 61000-4-15 + Harmonics IEC 61000-4-7
- V31.X8.XX Basic Fault + GOST 32144-2013 + Flicker IEC 61000-4-15 + Harmonics IEC 61000-4-7
- V31.1X.XX +IEC 61850 server option

¹ From firmware version V31.X5.28 – EN 50160 is user selectable, whether EN 50160:2007 or EN 50160: 2010 based on IEC 61000-4-30:2015 3^{rd} ed.

Supplemental Documents

- BG0521 PM180 Installation Manual
- BG0527 PM180 MODBUS Reference Guide
- BG0524 PM180 DNP3 Reference Guide
- BG0523 PM180 IEC 61850 Reference Guide
- BG0591 PM180 IEC60870-5 Reference Guide
- BG0531 PM180 Bay Controller Unit Application note
- BG0337 PAS Getting Started Guide
- BB0165 PM180 Fault Locator Application Note

Chapter 2 Device Description

Controls and Indicators

Device Controls

The PM180 is entirely controlled either from the remote display module (RDM or RGM), or by using the supplemental PAS power analysis software package.

Indicator LEDs

The PM180 has three status indicator LEDs that show present device operation status and give diagnostics indication; one energy pulsing LED that output kWh/kvarh pulses, located on the attached Display; and COM port status LEDs that show present ports status and communications activity.

LED Name	Color	Status	Description
CPU	Green	Flashing 1 sec On, 1 sec Off	Device operational and is functioning normally.
		Flashing 2 flashes, 1 sec Off	Device is in the Service Mode and is not operational.
		Flashing 3 flashes, 1 sec Off	A critical error has occurred - the device is not operational. Device servicing is required. For more information, see <u>Diagnostics Mode</u> below.
MAIN POWER	Green	On	Voltage is supplied to the main power supply unit.
BACKUP POWER	Green	On	Voltage is delivered to the backup power supply unit.
kWh/kvarh	Red	Flash at user- programmed rate	The device measures imported (consumed) active and reactive energy. For information on defining the LED pulse rate, see <u>Advanced Device Setup</u> in Chapter 6.

Modes of Operation

The PM180 can run in the following modes:

Operational Mode

Operational Mode is the common operation mode. All device features are available. When the device is in Operational Mode the CPU LED flashes for 1 second with a 1-second pause.

Energy Test Mode

Energy Test Mode tests the device energy measurement accuracy. All basic measurements are available; energy accumulators are not affected; setpoints operation, fault and power quality recorders are stopped. To put the device into the Energy Test Mode, see Device Options Menu in Chapter 3, or Device Mode Control in Chapter 10.

Service Mode

Service Mode is used for local upgrading of PM180 firmware. When the device enters Service Mode, the CPU LED briefly flashes 2 times with a 1-second pause. In Service Mode, all device operations are stopped.

Diagnostics Mode

The device enters Diagnostics Mode when the internal diagnostics detects a critical error that affects the normal device operation. All device operations are stopped until the critical error is cleared. All communications ports are still available. See Device Diagnostic Codes in Appendix F for the list of diagnostic events that cause a critical error. See Device Diagnostics for more information on the PM180 built-in diagnostics.

When the device is in Diagnostics Mode, the CPU LED briefly flashes 3 times with a 1-second pause, and the RDM display shows a diagnostic message.

For more information on indication and clearing the device diagnostics, see <u>Status Information</u> <u>Display</u> in Chapter 3, <u>Viewing and Clearing Device Diagnostics</u> in Chapter 3, and <u>Viewing and</u> <u>Clearing Device Diagnostics</u> in Chapter 10.

Communicating with the PM180

Communication with the PM180 can be established independently and simultaneously through any communications port using the support PAS program supplied with the device or user application software. All communication ports are slave ports and have factory-preset parameters, such as baud rate, data format, and communications protocol that can be easily changed whenever desired.

COM1-COM3 Serial Communications (standard)

The PM180 has three standard serial communication ports COM1 through COM3 for communicating with the master workstations, RTUs, PLCs or PAS™@ PCs, and with an optional remote display. All serial ports can operate in the RS-485 two-wire mode. The COM1 is an RS-232/485¹ versatile port and can be directly connected to the RS-232 port of a PC or a controller. The COM2 ports can also be used for RS-422 four-wire communication. Local programming and upgrading the device firmware can be established by any communication port.

All ports are optically isolated and can operate at baud rates up to 115200 bps. Each port can be set up for any communication protocol supported by the PM180 independently from other ports. All ports are factory preset to 19200 bps, 8-bits/No-parity data format, and programmed for the Modbus RTU protocol.

The COM3 port has different connection terminals and is intended for communication with the Remote Display Module (RDM) or Remote Graphical Module (RGM). If the remote display is not used, the COM3 port can be used as a common RS-485 port.

See <u>Configuring Serial Ports</u> in Chapter 3 for information on how to set up serial ports in your device. For wiring diagrams, refer to the PM180 Installation Manual.

Solution ○ Note

The COM3 port DB15 pins 1 and 8 deliver 12VDC for powering the remote display module. Connecting the RS-485 wires to these terminals can cause permanent damage to your RS-485 port.

COM4 Infrared Port (optional)

The PM180 has an optical infrared (IR) port for local retrieving data via a hand-held unit or a portable PC. The IR port can be equipped with an IEC- or ANSII-compatible optical head.

The IR port is identified in the PM180 as the COM4 port. It is factory preset to 19200 bps, 8-bits/Noparity data format, and programmed for the MODBUS RTU protocol.

¹ In PM180 N3 Version RS-485 is only available on COM1

The IR port is only available on the RGM180 attached to the IED.

COM5 Port (optional)

The following plug-in modules are identified as COM5 port:

- Embedded 56K modem for communications through public telephone lines (MODBUS RTU/ASCII and DNP3.0 protocols). - *future*
- Embedded Cellular modem for communication through public cellular network (MODBUS/TCP and DNP3.0/TCP)
- PROFIBUS DP future

USB Port (standard)

A USB node port is intended for local communications with the support PAS software. It is directly connected to your PC's USB port using the supplied USB cable. The USB communications does not require any settings. Just connect your PC to the PM180 USB port and install the supplied USB driver (see <u>Installing the USB Driver</u> in Chapter 6). The USB communications is ten times faster than the serial communications can provide at a maximum baud rate.

Ethernet Port (standard)

A 10/100Base-T Ethernet port provides a direct connection of the PM180 to a local area network through the TCP/IP protocols. The device has three onboard TCP servers configured for the Modbus/TCP (at TCP port 502), DNP3.0/TCP (at TCP port 20000) and IEC 60870-5-104 (at TCP port 2404) communications. The TCP servers can support up to 5 simultaneous connections with MODBUS/TCP, DNP3.0/TCP and IEC 60870-5-104 client applications.

Connection through the Ethernet port does not require device identification. The PM180 responds to any device address and returns the received address in the response message.

Solution → Note

To provide simultaneous file services for all ports, the PM180 keeps independent file pointers for each communications port. For a TCP port, the PM180 holds separate file pointers for each active TCP socket. The TCP server automatically closes a connection if a socket is idle for more than 5 minutes. There is no guarantee that a new connection is established at the same socket, so do not make any assumptions regarding the current file status when starting a new connection from your application. Always initialize a file pointer to a record from where you expect to begin reading a file. For more information, see "File Transfer" in the PM180 MODBUS Communications Guide.

Ethernet Port (optional)

A second Ethernet port for LAN backup is available in plug-in module. As default the standard Ethernet port is active, if this link is down the second optional Ethernet port will switch on automatically to provide LAN access through it. The second Ethernet port can be either wired LAN 10/100Base T, either optical 100Base FX either wireless IEEE 802.11 b/g.

It provides a direct connection of the PM180 to a local area network through the TCP/IP protocols. The device has two onboard TCP servers configured for the MODBUS/TCP (at TCP port 502) and DNP3.0/TCP (at TCP port 2000) communications. The TCP servers can support up to 5 simultaneous connections with MODBUS/TCP and DNP3.0/TCP client applications.

Connection through the Ethernet port does not require device identification. The PM180 responds to any device address and returns the received address in the response message.

CELLULAR Port (optional)

A 2G/3G Cellular modem port provides a direct connection of the PM180 to a public area cellular network through the TCP/IP protocols. The device has two onboard TCP servers configured for the Modbus/TCP (at TCP port 502) and DNP3.0/TCP (at TCP port 20000) communications. The TCP servers can support up to 5 simultaneous connections with MODBUS/TCP and DNP3.0/TCP client applications.

Connection through the CELLULAR port does not require device identification. The PM180 responds to any device address and returns the received address in the response message.

Using the RDM and RGM

The Remote Display Module (RDM) or Remote Graphical Module (RGM) is connected to the device's COM3 port using the RS-485 two-wire connection. The COM3 port connector has additional isolated 12VDC output terminals to power the RDM directly from the PM180. For information on using the RDM, see Chapter 3 "Using the RDM".

The remote display modules communicate with the PM180 using the MODBUS RTU protocol. Both the COM3 port and the RDM/RGM RS-485 port are preset at the factory to 19200 bps, 8-bits/No-parity, address 1, and run the MODBUS RTU protocol. The baud rate can be increased up to 115200 bps (depending on the communications quality) through the RDM or service Terminal program.

Using PAS

PAS is the support software supplied with the PM180 that gives the user basic tool for programming the device, performing remote control operations, monitoring real-time measurements, retrieving and analyzing historical data files, reviewing fault and power quality reports, and more.

PAS can communicate with the devices through any PM180 port using the MODBUS RTU, MODBUS ASCII and DNP3.0 protocols.

For information on installing and using PAS, see Chapter 5 "Using PAS".

Device Inputs

AC Inputs

The AC voltage and current input terminals are connected to the internal device circuits through input transformers that isolate the device from external wiring.

Voltage Inputs

The device has three transformer-isolated and one high-impedance voltage inputs (direct 690V RMS phase-to-phase voltage, ×120% overload). Voltage channels are designated as V1 through V4.

The secondary voltage rating and primary to secondary voltage ratio (PT ratio) of the external potential transformers must be specified in your device to provide correct voltage measurements. For more information on specifying voltage input ratings in your device, see <u>Basic Device Setup</u> in Chapter 6.

The secondary rating of the voltage inputs is used as a reference for calculating thresholds for the power quality and fault triggers.

The device can also be provided with 4 additional voltage inputs, using TRM module, to measure fast transient high voltage phase/neutral-to-ground.

Current Inputs

The device is provided with current input transformers with either 5A or 1A rated current.

All models are shipped with four extended range 100A current transformers (5A rated current) as a standard.

To expand the dynamic range of the current inputs, current measurements are performed in two measurement ranges regardless of the device model: one is the standard current range up to 20A/10A for precise power, energy and harmonics measurements, and the second is the extended current range up to 100A, used for measuring and recording fault currents.

The device can also be provided with 4 additional current inputs, using DFR module, to measure independent fault current up to 40 x In (200A @ In=5A)

For more information on specifying input ratings in your device, see <u>Basic Device Setup</u> in Chapter 6.

Sampling

8 AC channels (4 voltages and 4 currents) are continuously and simultaneously sampled at a rate of 256 samples per cycle (12.8 kHz at 50Hz or 15.36 kHz at 60Hz).

4 additional AC voltage channels are continuously and simultaneously sampled at a rate of 512 or 1024 samples per cycle.

The sampling rate is precisely synchronized with the power frequency. The reference frequency signal is taken from one of the phase voltage inputs V1-V3, band-pass filtered, and then sampled at 12.5 MHz providing a 0.0004% cycle measurement error.

Waveform Tracing

The sampled waveforms are stored to the circular trace buffer whose depth is sufficient to provide up to 20 pre-fault cycles for the waveform recorder. The waveform recorder is synchronized with the sampling circuitry and can store unlimited number of post-event cycles. The length of the captured waveforms is only restricted by the size of the allocated logging memory.

VDC Input

One high-impedance DC voltage input (300VDC range) V4, is normally intended for monitoring the substation battery. It is sampled at a rate of 2 samples per cycle (each 8 or 10 ms) and synchronized to the AC sampling circuitry.

The waveform recorder can provide recording of VDC data simultaneously with the AC input channels that allows testing the behavior of the substation battery under load at the time of a fault.

The VDC drop can also trigger a setpoints to provide an external alarm indication through a relay output or communications.

Digital Inputs

The PM180 can monitor up to 3 removable 16-channel digital input modules with a total of 48 inputs. The modules may be ordered with input options for dry contacts, or 24V, 125V and 250V wet inputs.

All digital inputs are sampled at a rate of 16 samples per cycle and synchronized to the AC sampling circuitry. This gives time stamping of the input transitions with a 1-ms resolution at 60 Hz, or 1.25-ms at 50 Hz.

Digital inputs have a programmable debounce time from one to 100 milliseconds in groups of eight inputs. Each input can be independently linked to any device counter, Energy/TOU system register, setpoints, Fault recorder, and Sequence-of-Events recorder.

The device waveform recorder provides synchronous recording of the 48 digital input channels together with the AC waveforms making it easy to correlate the operation of the station protection relays at the time of a fault.

Analog Inputs

The PM180 monitors up to 12 analog input (AI) channels, which may be used for measuring DC and low frequency currents and volts.

The following plug-in AI modules may be ordered with the device:

4-channel optically isolated 4AI/AO modules with optional ranges of 0-1 mA, ±1 mA, 0-20 mA, or 4-20 mA, 0-50 mA or ±10 V. The 0-1 mA and ±1 mA analog inputs can measure 200% overload currents up to 2 mA and ±2 mA.

The PM180 may be equipped with three 4AI/AO modules.

The scan time for regular analog inputs is 2 cycles (32 ms at @ 60Hz and 40 ms @ 50Hz). Al readings and triggers are updated each 1/2-cycle.

Each analog input can be independently scaled to provide true readings in the user-defined engineering units (see <u>Programming Analog Inputs</u> in Chapter 6).

NOTES:

- 1. If you use both 4AI/AO and 8AI modules in the same device, put the 4AI/AO module in slots with lower numbers, i.e., into the left side slots.
- 2. If you use regular 4AI/AO modules and fast 8AI modules, the regular inputs are scanned at a usual rate.

Device Outputs

Analog Outputs

The PM180 supports up to three removable 4AI/4AO modules with a total of 12 analog output channels that can output DC currents proportional to the measured analog quantities. All outputs

are optically isolated and have an internal power supply. The AI modules may be ordered with 0-1mA, \pm 1mA, 0-20mA, or 4-20mA output current. The 0-1mA and \pm 1mA analog outputs provide 200% overload currents up to 2 mA and \pm 2mA.

Update time for analog outputs is 2-cycles (32 ms at @ 60Hz and 40 ms @ 50Hz).

Each analog output can be independently scaled to provide the desired engineering scale and resolution (see <u>Programming Analog Outputs</u> in Chapter 6).

Relay Outputs

The PM180 provides up to 24 digital outputs through three plug-in 8-channel relay output modules. Each module has eight electro-mechanical relays 2-contact SPST Form A.

The following table shows timing characteristics of the relays and their expected lifetime.

Characteristic	Form A Relays
Operate time	10 ms
Release time	5 ms
Bounce time	1 ms
Mechanical endurance	10,000,000 operations
Electrical endurance (8A/250V)	50,000 operations

Each relay is independently programmable and operates in latched, unlatched, pulse or KYZ mode. Relay operations can be inverted so that the relay is energized in its non-active state and deenergized when it is operated. This mode, known as "failsafe" mode, is used for signaling purposes to send alarms when the device is not operational either due to a fault or due to loss of power.

Latched and Unlatched Operation

Latched and unlatched mode of operation concerns local relay commands issued from the control setpoints.

In unlatched mode, a local setpoints command sent to the relay is automatically cleared; the relay is released when all setpoints linked to the relay return to non-operated state.

In latched mode, the operated relay is not released automatically when the conditions that caused the relay to operate are no longer present. To release a latched relay, an explicit release command must be sent either from a separate setpoint, or through communications. If the relay is locked in the operated state by a remote command, the local release command only clears the internal latch and the relay stays in operated state until the remote command is removed.

Pulse and KYZ Operation

Pulse mode causes a relay to produce a pulse with a predefined duration in response to a local or remote relay command. After a pulse is expired, the command is automatically cleared and the relay is held up in released state for at least pulse width time before the next command is accepted.

The programmable pulse width is selected from 10 ms to 1 sec. The device scans all relays in 1/2-cycle time intervals. This means that the actual pulse width is a multiple of the 1/2-cycle time rounded to the nearest larger value. The programmable pulse width does not include the relay operate and release times.

In KYZ mode, every operate command changes the present state of a relay to the opposite state producing a transition pulse, and the relay is held up in this state for at least pulse width time before the next command is accepted. KYZ mode is commonly used with Form C relays to signal pulses by alternation of the two contact pairs.

Pulse and KYZ relays can be directly linked to the internal pulse sources to output energy or time interval pulses.

Remote Commands

A remote operate command forces a latched or unlatched relay to move to its active state. The relay is held in active state until the command is removed by a remote release command. The remote release command also removes the local commands that hold a latched relay in active state.

A remote operate command sent to a pulse or KYZ relay forces the relay to produce a pulse or changes its state. A remote release command sent to a pulse or KYZ relay has no effect since the operate command is cleared automatically for these relays.

Retentive Relays

Latched relays can be set to operate in retentive mode. Retentive mode affects the behavior of the relay after loss of power.

After restoring power, all non-retentive relays are in inactive state until local conditions are reevaluated. All active remote commands for non-retentive relays are cleared.

Retentive relays retain their status after restoring power, and all active remote commands that were issued before loss of power are still effective.

Critical Faults

When a critical error is detected by the device diagnostics, all relays are released regardless of their operation mode, and all remote relay commands are removed.

Metering

RMS Measurements

All RMS quantities are based on 1/2-cycle true RMS measurements performed over 64 samples of the acquired waveforms. The 1/2-cycle quantities are values (normally, RMS volts, RMS currents and unbalances) measured over one cycle and updated each half cycle (IEC 61000-4-30). This allows fast response to power quality and fault events.

RMS Trace

The PM180 handles a circular RMS trace buffer that stores the last forty 1/2-cycle RMS, unbalance, zero-sequence, VDC and frequency readings. This allows the data recorder to provide 1/2-cycle trending of up to 20 pre-fault cycles when it is triggered from the Power Quality or Fault recorder. The follo

e following table lists parameters that are available for pre-fault tracing

Parameter	Label
Phase-to-neutral volts	V1, V2, V3
Phase-to-phase volts	V12, V23, V31
Auxiliary volts	V4
Standard range currents	1, 12, 13, 14
Standard range neutral current	In
Extended range currents	l1x, l2x, l3x, l4x
Extended range neutral current	Inx
Voltage zero sequence	V ZERO-SEQ
Standard range current zero sequence	ZERO-SEQ
Extended range current zero sequence	Ix ZERO-SEQ
Voltage unbalance	V UNB%
Standard range current unbalance	I UNB%
Extended range current unbalance	Ix UNB%
DC voltage	VDC
Power frequency	Frequency

Data logs #13 (fault data trend) and Data logs #14 (PQ data trend) are internally linked to the RMS trace buffer. The number of pre-fault cycles for data trending is defined when configuring the Power Quality and Fault recorders. See Configuring the Power Quality Recorder and Configuring the Fault Recorder in Chapter 7.

Harmonic Measurements

The PM180 provides harmonic measurements on four voltage channels V1-V4 and four standard range (20A/10A) current channels I1-I4. To avoid erroneous harmonic readings when the high fault currents saturate current channels, the harmonics registers are not updated at the time of the fault.

The FFT analysis is performed over a 10-cycle waveform for 50Hz and 12-cycle waveform for 60Hz system, sampled at a rate of 256 samples per cycle. This gives spectrum components up to the 63rd harmonic.

				v the device.

Parameter	Label		
Total Harmonics			
Voltage THD	V1 THD - V4 THD		
Current THD	11 THD - 14 THD		
Current TDD	11 TDD - 14 TDD		

Parameter	Label
Current K-factor	11 KF - 14 KF
Voltage Crest-factor	V1 CF - V4 CF
Current Crest-factor	11 CF - 14 CF
Total Interharmonics	
Voltage THD	V1 THD/I - V4 THD/I
Current THD	11 THD/I - 14 THD/I
Individual Harmonics	
V1 Odd/even-harmonic distortion	V1 %HD1 - V1 %HD63
V2 Odd/even-harmonic distortion	V2 %HD1 - V2 %HD63
V3 Odd/even-harmonic distortion	V3 %HD1 - V3 %HD63
V4 Odd/even-harmonic distortion	V4 %HD1 - V4 %HD63
1 Odd/even-harmonic distortion	I1 %HD1 - I1 %HD63
2 Odd/even-harmonic distortion	I2 %HD1 - I2 %HD63
3 Odd/even-harmonic distortion	I3 %HD1 - I3 %HD63
4 Odd/even-harmonic distortion	I4 %HD1 - I4 %HD63
V1 Odd-harmonic voltage	V1 H01 - V1 H63
V2 Odd-harmonic voltage	V2 H01 - V2 H63
V3 Odd-harmonic voltage	V3 H01 - V3 H63
V4 Odd-harmonic voltage	V4 H01 - V4 H63
11 Odd-harmonic current	I1 H01 - I1 H63
2 Odd-harmonic current	l2 H01 - l2 H63
3 Odd-harmonic current	I3 H01 - I3 H63
14 Odd-harmonic current	I4 H01 - I4 H63
Three-phase total odd-harmonic kW	kW H01 - kW H63
Three-phase total odd-harmonic kvar	kvar H01 - kvar H63
Three-phase total odd-harmonic PF	PF H01 - PF H63
Symmetrical Components	
Positive-sequence voltage	V PSEQ
Negative-sequence voltage	V NSEQ
Zero-sequence voltage	V ZSEQ
Negative-sequence voltage unbalance	V NSEQ UNB%
Zero-sequence voltage unbalance	V ZSEQ UNB%
Positive-sequence current	I PSEQ
Negative-sequence current	INSEQ
Zero-sequence current	ZSEQ
Negative-sequence current unbalance	I NSEQ UNB%
Zero-sequence current unbalance	I ZSEQ UNB%
Fundamental Phasors	
Voltage magnitude	V1 Mag - V4 Mag
Current magnitude	I1 Mag - I4 Mag
Voltage angle	V1 Ang - V4 Ang
Current angle	I1 Ang - I4 Ang
Current angle	

The device provides individual voltage and current harmonic measurements both in percent of the fundamental component, and in corresponding engineering units. Quantities in engineering units are calculated only for odd harmonics.

Angles for phasor vectors are given relative to the V1 phase voltage.

Aggregation Intervals

The device provides electrical measurements using a number of fixed aggregation time intervals from 1/2 cycle to 2 hours. The demand measurements use programmable aggregation intervals of up to 2.5 hours. The following table shows aggregation intervals available for different electrical quantities.

Parameter	1/2 cycle	1 cycle	200 ms	1 sec	3 sec	10 min	2 hours
RMS volts and currents	×	×	×	×	×	×	×
Powers		×		×	×		
Zero-sequence	×	×	×	×	×	×	×
Unbalance	×	×	×	×	×	×	×
DC Voltage	×	×	×	×	×	×	×
Frequency		×	×	×	10 sec	×	×
Total		- I	×	×	×	×	×
Harmonics/Interharmonics							
Individual Harmonics	1		×				1
K-factor	1		×	×	×	×	×
Crest factor			×		×	×	×

Parameter	1/2 cycle	1 cycle	200 ms	1 sec	3 sec	10 min	2 hours
Symmetrical components			×				
Phasors			×				

The 200 ms RMS and unbalance quantities are integrated over a 10-cycle time for 50 Hz and 12cycle time for 60 Hz power system. The data for the 3 sec time interval is aggregated from fifteen 200 ms time intervals. All RMS quantities aggregated from lower time intervals represent true RMS readings over the entire aggregation interval.

Demands

Demand measurements are provided for volts, amps, total harmonics and powers. Two different demand measurement techniques are used: block interval demand and sliding window demand.

Block Interval Demand

The block interval demand is calculated by aggregation of measurements over contiguous and nonoverlapping fixed time intervals. Volts, amps and total harmonic demands are produced by averaging 1 sec RMS aggregates. Power demands are evaluated using integration of energies and averaging power over the demand time interval.

For volt, ampere and total harmonic demands, the demand period time is programmed from 1 second to 2.5 hours (see <u>Advanced Device Setup</u> in Chapter 6). For power demands, the demand period can be selected from 1 min to one hour.

Sliding Window Demand

The sliding window (rolling) demand technique is applied to power demands. The sliding window demand is calculated by averaging block interval demands over a number of adjacent demand intervals, which produce a sliding window. The number of time intervals for a sliding window can be selected from 1 to 15. When the present block demand interval expires, the sliding window moves one step forward by replacing the oldest entry with the most recent calculated block interval demand.

Accumulated and Predicted Demands

For power demands, the device provides an indication of two additional parameters: the accumulated block interval demand and predicted sliding window demand. Both accumulated and predicted demands can be effectively used for load shedding on the substation feeders.

The accumulated demand represents the relative energy accumulated from the beginning of the present demand interval and expressed in power units. It grows from zero at the beginning and up to the final block demand at the end of the demand interval. If the accumulated demand exceeds the allowed demand at any point, the final block interval demand is more than the present accumulated demand (or equal if the load is disconnected).

The predicted demand shows the expected sliding window demand value at the end of the present demand interval, assuming that the load does not change. The predicted demand reflects load changes immediately as they happen.

Power demands are calculated for all device energy accumulators, including the Summary and TOU energy registers (see <u>Energy Metering</u> below).

Parameter	Block Demand	Sliding Demand	Accumulated Demand	Predicted Demand
Volt demands	×			
Ampere demands	×			
Voltage THD demand	×			
Current THD demand	×			
Current TDD demand	×			
kW demand (import and export)	×	×	×	×
kvar demand (import and export)	×	×	×	×
kVA demand	×	×	×	×
Summary energy demand (16 configurable registers)	×	×	×	

The following table shows demand quantities provided by the device.

Maximum Demands

Every demand parameter is provided with the maximum demand register, which contains a timestamped peak demand value recorded since the last reset. Maximum power demand registers are linked to the corresponding sliding demand source registers. If you wish to use block interval demands instead of sliding window demands as a source, set the number of the block intervals in the sliding window to 1.

For the TOU demand registers, the device allows automatic recording (profiling) of the daily and monthly maximum demands to the data log together with the TOU energy readings.

Energy Metering

The PM180 provides true four-quadrant energy measurements for kWh imported and exported, kvarh imported and exported, and kVAh, with Class 0.2 ANSI C12-20:2002 or Class 0.2S IEC 62053-22:2003 accuracy. Net and total energy measurements for kWh and kvarh, and volt-hours and ampere-hours calculations are provided.

The device provides nine-digit energy counters by default. You can set the counters to have fewer digits by changing the default energy roll value in your device (see <u>General Setup Device Option</u> in Chapter 6).

Energy Pulses

The PM180 outputs energy pulses through relay contacts with a user-selectable pulse rate (see <u>Producing Energy Pulses</u> and <u>Programming Relay Outputs</u> in Chapter 6). The pulse type (complete pulse or KYZ pulse), pulse width and polarity are freely programmable.

Energy Pulse LEDs

The PM180 has two pulse LEDs on the front that provide energy pulsing for imported kWh and kvarh.

The LED pulse rate (pulse constant) is user-selectable (see <u>General Setup Device Option</u> in Chapter 6) and is programmed in secondary units. It does not depend on the ratings of the external transformers. The LED pulse rate is set at the factory to 0.1 Wh/pulse corresponding to one equivalent disk revolution.

The energy pulse LEDs are used for testing device accuracy by the external control equipment through pulse readers. In order not to affect the energy accumulators, the device should be put into the Energy Test Mode where the energy accumulators are disconnected from the power sources. Energy Test Mode also prevents erroneous setpoint operation and recording faults and power quality events when the test volts and currents are applied to the device. For information on entering the Energy Test Mode, see <u>Device Mode Control</u> in Chapter 10 and <u>Device Options Menu</u> in Chapter 3.

Summary Energy Registers

The PM180 provides 16 summary (totalization) energy registers and 16 parallel demand registers that can be linked to any internal energy source, or to any external pulse source that delivers energy pulses through the device digital inputs (see Chapter 8 <u>Totalization Energy and TOU</u> <u>Registers</u>).

Each summary register can be configured to accumulate energies from multiple sources using arithmetic addition and subtraction. A summary register is allowed to be linked to another summary register to provide more comprehensive energy calculations.

Time-of-Use

The PM180 TOU system handle a 10-year calendar with up to 16 types of days and up to eight tariff changes per day in each daily profile.

The device provides 16 TOU energy and 16 parallel maximum demand registers that receive data from the corresponding summary registers. Each TOU energy and TOU maximum demand register stores the accumulated energy and corresponding peak demands for up to 16 tariffs. See Chapter 8 "<u>Totalization Energy and TOU Registers</u>" for information on how to configure the TOU registers and define the tariff scheme in your device.

The device allows automatic daily and monthly profiling of the TOU energy readings and TOU maximum demands to the data log files. Data log files #15 and #16 are dedicated to the TOU system profile log and can be configured to automatically record TOU daily and monthly profiles (see <u>Configuring Data Log Files</u> in Chapter 7).

Instrument Transformer Correction

Ratio and phase angle error correction can be applied to external CTs and PTs to achieve overall metering installation accuracy, or be used in any metering installation to optimize the accuracy of the metering data.

The user can program up to both ratio correction and phase angle error curves covering the typical transformer operating range.

The PM180 is able to calculate the transformer errors dynamically based on the transformer performance characteristics and the actual CT current and PT voltage signals appearing at the meter, to interpolate to the actual measured operating point and to apply the interpolated error corrections to the meter calculations.

See <u>Instrument Transformer Correction Setup</u> on how to program the ratio correction factors and phase angle errors for external CTs and PTs and enable correction in the meter. See <u>Device</u> <u>Options and Mode Control</u> on how to enable and disable correction in the meter via the front display.

NOTES

- 1. When transformer correction is enabled, it is applied to all instrumentation, billing and power quality calculations and waveforms.
- 2. Transformer correction does not affect test LED pulse outputs.
- 3. Transformer correction is not operational in test mode regardless of the option's status.

Monitoring

Substation Battery

The substation battery is normally connected to the DC voltage input terminals to provide battery voltage measurements. Refer to the PM180 "Installation Manual" for wiring diagrams. See <u>VDC Input</u> above for information on metering and monitoring DC voltage in your device.

Memory Backup Battery

The hardware circuit monitors the status of the memory backup battery. When the battery level drops below the minimum allowed threshold, the red MEM.BAT.LOW LED on the front of the device is lit up, indicating that the battery should be replaced.

Power Supply

The status of the two power supply units is indicated on the front of the device by two green LEDs: MAIN POWER and BACKUP Aux. POWER. The LEDs are lit up when the supply voltage is present on the device terminals.

Logical Controller

The embedded logical controller allows monitoring any measured quantity or external contacts to provide indication, counting and recording events when the monitored value exceeds the predefined threshold or when status transitions are detected on the device inputs. See <u>Using</u> <u>Control Setpoints</u> in Chapter 6 for information on programming the logical controller.

The logical controller launches the Waveform recorder and Data recorder to record the input waveforms and measured quantities at the time of the event. Control setpoints can also be linked to the Event recorder and Sequence-of-Events recorder to record setpoint transition events into the event log files.

For Bay Controller Unit application see BG0xxx PM180 Bay Control Unit - Application Note

Recording

Event Recorder

The Event recorder automatically records time-tagged self-supervision events related to configuration changes, resets and device diagnostics. The logical controller can also be programmed to trigger the Event recorder in order to put the events monitored through programmable setpoints into the event report. See <u>Configuring the Event Recorder</u> in Chapter 7 for more information on programming the Event recorder.

Sequence-of-Events Recorder

The Sequence-of-Events recorder automatically records time-tagged fault events and programmable digital inputs, relay outputs and setpoint transition events. See <u>Configuring the Sequence-of-Events Recorder</u> in Chapter 7 for more information on programming the Sequence-of-Events recorder.

Power Quality Recorder

Depending on the order, the PM180 may be supplied with either the IEEE 1159 Power Quality recorder, or EN50160 Power Quality recorder, or GOST 32144-2013 Power quality recorder.

The recorder continuously monitors voltage inputs and records time-tagged disturbances and faults into the power quality event log. The EN 50160¹ Power Quality recorder also provides the EN 50160 statistics counters for standard compliance reports, and long-term harmonics survey statistics. All power quality triggers have programmable thresholds and can be adjusted for specific applications.

The IEEE 1159 Power Quality recorder automatically classifies disturbance events by IEEE 1159 disturbance categories. The IEEE 1159 Power Quality reports can also combine traditional IEEE 1159 voltage disturbance categories with fault current disturbances and protective relay fault information for complete "cause and effect" fault and disturbance analysis.

The Power Quality recorder is programmed to trigger the Waveform recorder and Data recorder to record input waveforms and long-duration RMS trends during the time of the disturbance. See <u>Configuring the IEEE 1159 Power Quality Recorder</u> and <u>Configuring the EN50160 Power Quality Recorder</u> in Chapter 7 for more information.

Fault Recorder

The programmable Fault recorder records time-tagged fault events into the fault event report. It can be triggered externally through any digital input or internally from the embedded fault detector. The internal fault detector can automatically detect different fault categories using the device's own subcycle measurements. The fault triggers have programmable thresholds and hysteresis that can by adjusted for specific substation conditions.

The Fault recorder can be programmed to trigger the Waveform recorder and Data recorder to record input waveforms and long-duration RMS trends during the time of the fault. See <u>Configuring</u> the Fault Recorder in Chapter 7 for more information.

Fast Transient Recorder

The fast transient recorder is provided with the TRM – transient add-on module. It can detect impulsive and low frequency oscillatory transient overvoltages with peaks up to 2kV and durations from 20 microseconds.

¹ From firmware version V31.X5.28 – EN 50160 is user selectable, whether EN 50160:2007 or EN 50160: 2010 based on IEC 61000-4-30:2015 3^{rd} ed.

The recorder does not require any special setup above a conventional PQ recorder setup for transient overvoltages. Waveform log #6 is especially dedicated for fast transient waveforms. It automatically stores 2-cycle voltage waveforms sampled at a rate of 1024 samples/cycle or 4-cycle voltage waveforms sampled at a rate of 512 samples/cycle whenever a transient overvoltage is detected.

Unlike a basic transient recorder provided with the PM180 that detects and records transient voltages between phase conductors and a neutral terminal (in 4LN3 and 3LN3 configurations), or between two phase conductors (in line-to-line configurations), the fast transient recorder detects transient voltages between phase conductors and a ground terminal and between the neutral and a ground terminal regardless of a wiring configuration.

See the PM180 Installation Manual for the terminal location and wiring diagrams. To help you check your voltage connections, the PM180 provides 2 or 4-cycle phase RMS voltages V1x through V3x, and 2 or 4-cycle neutral voltage V4x relative to the ground terminal that you can monitor via PAS.

Phasor Measurement Unit - PMU

The PMU is implemented as an add-on card integrated in one assembly with the fast transient recorder module. Both may be ordered in a single package or separately.

The PM180 firmware version must be at least V31.XX.28

Voltage and current signals are delivered from the common AC inputs via the PM180 backplane. 400 Hz cut-off anti-aliasing filters are applied on voltage and current inputs to reject undesirable high-frequency signal components.

Measuring Techniques

Synchrophasor Estimation

The PMU calculates and reports synchrophasor estimates as defined and described in IEEE C37.118.1 Clause 4.

The estimates include three-phase voltage and current synchrophasors calculated from the input signal waveforms synchronized to an absolute time reference, followed by complex multiplication with the nominal frequency carrier, i.e., multiplication of the input by the quadrature oscillator (sine and cosine).

All measurements are made on a common time base and related to the system nominal frequency, so the phase angle measurements are directly comparable. Differences in the actual frequency are included in the phase angle estimation. A precise time reference clock is used to provide the UTC time to determine the phase angle.

The filtering associated with the computation of the synchrophasors rejects the undesirable signal components appearing at the PMU inputs by the filter attenuation. The phasor estimation algorithm uses fixed length two-cycle triangular weighted FIR filter that is not changed for different PMU reporting rates. In order to simplify time stamp generation and phase compensation, the algorithm uses an odd number of samples (filter taps). This allows conversions and filtering to use a sample time stamp at the center of the window without adjustment.

The phasor calculations use fixed frequency sampling at a rate of 25 samples/cycle, which corresponds to $25 \times 50 = 1250$ samples/s for a 50 Hz system or $25 \times 60 = 1500$ samples/s for a 60 Hz system.

The complex synchrophasor estimate X(i) at the i-th sample time is calculated as follows:

$$X_{\text{Re}}(i) = \frac{\sqrt{2}}{Gain} \times \sum_{k=-N/2}^{N/2} x_{(i+k)} \times \cos(2\pi f_0 \times \Delta t \times (i+k))$$
$$X_{\text{Im}}(i) = -\frac{\sqrt{2}}{Gain} \times \sum_{k=-N/2}^{N/2} x_{(i+k)} \times \sin(2\pi f_0 \times \Delta t \times (i+k))$$
$$Gain = \sum_{k=-N/2}^{N/2} W_{(k)}$$

Where:

 $X_{\rm Re}(i)$ - a real component of the synchrophasor estimate at the i-th sample time

 $X_{\rm Im}(i)$ - an imaginary component of the synchrophasor estimate at the i-th sample time

 f_0 - the nominal power system frequency (50 Hz or 60 Hz)

 $\Delta t = 1/\text{sampling frequency}$

N = 48 - the FIR filter order

 $x_{(i)}$ - waveform sample at time t = $i \times \Delta t$, where the time t=0 coincides with 1 s rollover

 $W_{(k)}$ - low pass FIR filter coefficients

The FIR filter coefficients W(k) are defined as follows:

$$W(k) = (1 - \frac{2}{N+2} |k|)$$

Where:

k = -N/2 to N/2

N - filter order, N = $(25 - 1) \times 2 = 48$ at a 25 samples/cycle sampling frequency.

The synchrophasor estimate at the i-th sample time in polar from is calculated as follows:

$$X(i) = \sqrt{X_{\text{Re}}^2(i) + X_{\text{Im}}^2(i)}$$

 $\Theta(i) = \arccos(X_{\text{Re}}(i) / X(i))$

Where:

X(i) is the magnitude of the i-th phasor estimate

 $\Theta(i)$ is the angle of the i-th phasor estimate

Under this definition, $i \times \Delta t$ is the offset, i.e., the instantaneous phase angle, relative to a cosine function at the nominal system frequency synchronized to UTC. A cosine has a maximum at t = 0, so the synchrophasor angle is 0 degrees when the maximum of $x_{(i)}$ occurs at the UTC second

rollover, and –90 degrees when the positive zero crossing occurs at the UTC second rollover.

As long as the sample times are compensated for input delays, the time stamp at the center of the window produces an estimate whose phase follows the actual power system frequency and does not need further phase or delay correction. It does require magnitude correction for off-nominal frequency that is applied to the final phasor based on the frequency estimate. The magnitude is compensated by dividing by a sine at the actual signal frequency with an additional factor of 1.625 to increase compensation, as defined in IEEE C37.118.1 Clause C5.1:

$$X(i) = X(i)/(\sin(\pi(f_0 + 1.625\Delta F(i))/2f_0))$$

Where: $\Delta F(i)$ = deviation of frequency from nominal computed at point *i*.

Frequency and ROCOF Estimation

The frequency is computed as the first derivative of the synchrophasor phase angle, and ROCOF is computed as the second derivative of the same phase angle.

The frequency and ROCOF estimates are based on positive sequence synchrophasors calculated using the symmetrical components transformation. Since phase angle changes relative to the difference between the actual frequency and the nominal frequency, this approach yields the offset from nominal.

The frequency and ROCOF estimation at the i-th phase estimate are calculated upon the equations given in IEEE C37.118.1a Clause C4:

$$\Delta F(i) = \left[\Theta(i+1) - \Theta(i-1)\right] / \left[4\pi \times \Delta t\right]$$

$$DF(i) = \left[\Theta(i+1) + \Theta(i-1) - 2\Theta(i)\right] / \left[2\pi \times \Delta t^2\right]$$

Where: $\Theta(i)$ is the angle of the i-th positive sequence estimate X(i), and $\Theta(i)$ +1) and $\Theta(i)$ = 1) are the angles of the phasor estimates following and preceding the i-th phasor estimate.

Measurement Time Synchronization

The PMU should be provided with a reliable and accurate GPS time source, that can provide time traceable to UTC so all measurements are synchronized to UTC time with accuracy sufficient to meet the requirements of IEEE C37.118.1.

For each measurement, the PMU assigns a time tag that includes the time and time quality at the time of measurement. The time tag can resolve time of measurement at 1-µs accuracy.

The time status includes time quality that clearly indicates traceability to UTC, time accuracy, and leap second status. Time and time quality for reporting and recording are derived from the PMU time tag and converted to the format and content as required.

Reporting Rates

The PMU supports data reporting at sub-multiples of the nominal system frequency. The actual reporting rate is user selectable.

The available rates are listed in the following table.

System frequency		50 Hz			60 Hz													
Reporting rates (frames/s)	1	2	5	10	25	50	1	2	3	4	5	6	10	12	15	20	30	60

PMU Communications

IEC 61850 Communications

PMU Data Model

Synchrophasor data transfer in the context of IEC 61850 uses IEEE C37.118 to IEC 61850 mapping mechanism defined in IEC 61850-90-5.

PMU is modeled as a dedicated logical device within the PM180 IED. The detailed PMU data model is shown as a part of the ICD definition file in Annex A.

The PMU logical device is responsible for the publishing of the synchrophasor measurements as defined in IEEE C37.118.2. It includes:

a) MMXU measurement logical node that represents voltage and current synchrophasor data, frequency and ROCOF measurements; the new data object of HzRte was added to the MMXU logical node to accommodate the ROCOF data.

b) LTIM time management logical node that gives indication of the local time configuration and status, like offset of local time from UTC and the flag indicating if daylight saving time is in effect.

c) LTMS time master supervision logical node that is used for supervision of the time synchronization function; it indicates the current time source and time synchronization status according to IEC 61850-9-2.

d) Multicast sampled values publisher that is responsible for publishing of the synchrophasor data stream over Ethernet at configured reporting rates.

Figure 2-1 shows representation of synchrophasor measurements via the MMXU logical node objects and attributes.

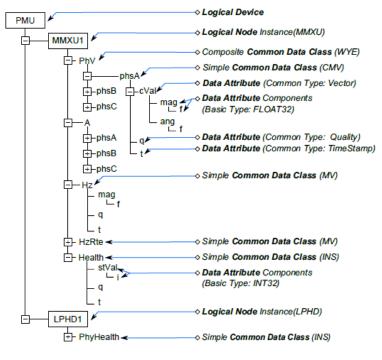


Figure 2-1 MMXU logical node data model

Encoding Phasor Data in Multicast SV APDU

IEEE C37.118.2 synchrophasor data stream is mapped to IEC 61850-9-2 sampled values APDU (application protocol data units). The sampled values dataset is user configurable.

Encoding of the sampled values APDU frame is shown in Figure 2-2.

The APDU contains a single ASDU (application service data unit), which is encoded using ISO/IEC 8825-1 ASN.1 basic encoding rules (BER) with context-specific field tag octets listed in IEC 61850-9-2, Table 14.

Unlike other PDU attributes, a sequence of sampled phasor data is encoded as a compact block without ASN.1 tag triplets. The dataset members are encoded in their basic forms using fixed-length basic data type encoding rules listed in IEC 61850-9-2 Table 15. An example of PMU dataset encoding is shown at right in Figure 2-2.

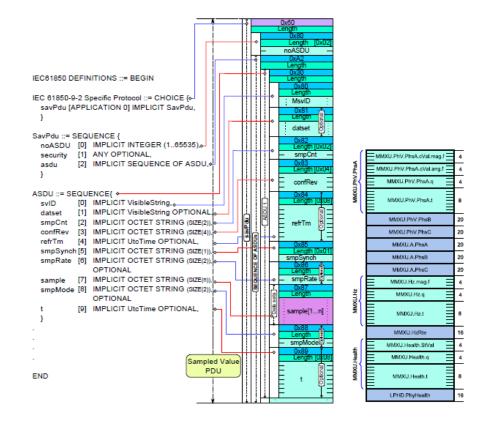


Figure 2-2 Encoding of the SV APDU frame and synchrophasor data (at right)

The following picture shows a captured multicast sampled values frame transmitting a synchrophasor data stream over a local Ethernet network.

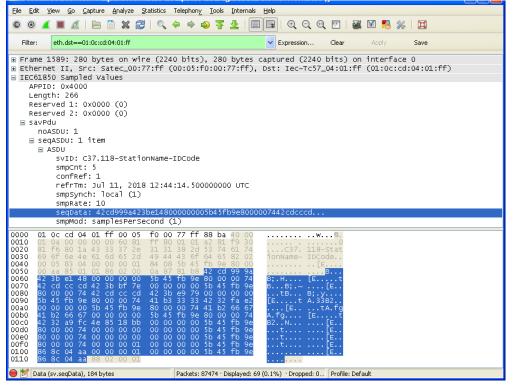


Figure 2-3 Captured synchrophasor multicast sampled values frame

Time Synchronization

Time synchronization can provide a common time basis for the fault recorders in a protection or control system so that events and disturbances within the entire station can be compared to one another.

The PM180 can receive time synchronization signal either from a GPS satellite clock that has an IRIG-B time code output or from another device that can provide minute-aligned time synchronization pulses through relay contacts connected to DI1-DI48 PM180 digital input, or from the Ethernet network using SNTP protocol.

The PM180¹ IRIG-B Module port uses un-modulated (pulse-width coded) time code signal (unbalanced 5V level), according to IRIG Standard 200-04, supporting IRIG-B000/B001 and -B004/B005 code, the IRIG time code designation consists of a letter and three digits, the bold codes are those which are supported, as shown below:

IRIG Time code Formats table						
Format	Pulse Rate (or bit rate)	Index Count interval				
IRIG-A	1000 PPS (pulses per second)	1ms				
IRIG-B	100 PPS	10ms				
IRIG-D	1 PPM (pulses per minute)	1 minute				
IRIG-E	10 PPS	100ms				
IRIG-G	10000 PPS	0.1ms				
IRIG-H	1 PPS	1 second				

IRIG Signal Identification Numbers (3 digits)

1 st Digit	Modulation
0	Unmodulated, DC Level Shift (DCLS), pulse-width coded
1	Amplitude modulated, sine wave carrier
2	Manchester modulated
2 nd Digit	Carrier Frequency/Resolution
0	No carrier (DCLS)
1	100 Hz/10ms resolution
2	1 kHz/1ms resolution
3	10 kHz/100μs resolution
4	100 kHz/10µs resolution

3 rd Digit	Modulation
0	BCDTOY, CF, SBS
1	BCDTOY, CF
2	BCD _{TOY} ,
3	BCD _{TOY} , SBS
4	BCDTOY, BCDYEAR, CF, SBS
5	BCDTOY, BCDYEAR, CF
6	BCD _{TOY} , BCD _{YEAR}
7	BCD _{TOY} , BCD _{YEAR} , SBS

¹ In PM180 N3 Version, the IRIG-B synchronization port is also available from the CPU board.

For more information on time synchronization in your device and IRIG-B operation, see <u>Time</u> <u>Synchronization Source</u> in section Local Settings, Chapter 6.

Device Diagnostics

Device diagnostic messages may appear as a result of the PM180 built-in diagnostic tests performed during start-up and device operation.

All diagnostic events are recorded in the device Event log and can be inspected via PAS (see <u>Viewing the Event Log</u> in Chapter 13). The diagnostics status is also stored in a non-volatile register, which is not affected by loss of power and may be read and cleared via PAS, from the RDM, or from a user application. Refer to the PM180 communication guides for the diagnostic register address and layout. See <u>Device Diagnostic Codes</u> in Appendix F for the list of diagnostic codes and their meanings.

Device failures are divided into three categories:

- Non-critical intermittent faults with auto-reset. They do not cause the device to restart but may cause temporary degradation of device functionality, like IRIG-B time code signal faults. These faults are cleared automatically as the condition that caused the fault disappears.
- 2. Non-critical recoverable hardware or configuration faults with manual reset. These faults normally cause the device to restart followed by repairing of the configuration data. These faults must be cleared manually via PAS, from the RDM, or from a user application.
- 3. A critical unrecoverable hardware or configuration failure. The reason may be an unrecoverable sampling failure, or corruption of the time, the factory device configuration or the calibration setup data. A critical error causes the device to release all its outputs and to stop normal operation until the faults that caused the critical error are cleared.

Hardware failures are normally non-critical recoverable faults that do not cause a system failure but may cause data loss. Hardware failures are often caused by excessive electrical noise in the region of the device.

A configuration reset may also be a result of the legal changes in the device configuration whenever other configuration data is affected by the changes made.

In the event of a device fault, check the fault reason and clear the device diagnostics. If the reason is a time fault, update the device clock. In the event of a configuration reset, determine the device setup affected by the fault via the event log, and then verify the setup data.

See <u>Viewing and Clearing Device Diagnostics</u> in Chapter 10, <u>Viewing and Clearing Device</u> <u>Diagnostics</u> in Chapter 3, and <u>Status Information Display</u> in Chapter 3 on how to inspect and clear the device diagnostics status.

If the device continuously resets itself or an unrecoverable critical error occurs, contact your local distributor.

Device Fault Alarm

The PM180 provides a global "DEVICE FAULT" event flag that is asserted all the time while one of the non-critical diagnostics events exists. It can be checked from a setpoint (see Using Control Setpoints in Chapter 6) to give a fault indication via a relay output. If the alarm relay is programmed for failsafe mode using inverting polarity, then its normally closed contacts will be open if either the device looses power or a non-critical device fault occurs. Note that in the event of a critical system failure, all relay outputs are automatically released.

NOTE

The IRIG-B time faults may not be masked and may not be cleared externally. If the IRIG-B time code signal is not provided, set the device time synchronization input to any unused digital input (see <u>Local Settings</u> in Chapter 6) to avoid fault alarms caused by the IRIG-B port.

Chapter 3 Using the RDM

Connecting the RDM

Connect the RDM to the PM180 COM3 port using the supplied cable as shown in the PM180 Installation Manual. When the PM180 is powered, the RDM display lights up.

The COM3 and RDM communications settings must match one another. Both the COM3 port and the RDM RS-485 port are factory preset to 19200 bps, 8-bits/no-parity, device address 1, Modbus RTU protocol.

When the RDM fails to establish communications with the PM180, the RDM display indicates a connection error as shown on the left picture. When this happens:

- diSP
- 1. Check your connections
- 2. Check whether the PM180 is in the Service Mode
- Check whether communications settings in the RDM match the settings made for the COM3 port of the PM180. For information on how to get the serial port settings in your PM180, see <u>Configuring Serial Ports</u> in Chapter 3 "Using HyperTerminal". If you want to revise the RDM communications settings, press ENTER and follow guidelines for the Display Setup menu (see <u>Configuring the RDM</u>)

Data Display

The RDM has a simple interface that allows you to display numerous measurement parameters in different display pages. The numeric LED display shows up to three parameters at a time. Small round LEDs on the right and below the display indicate displayed parameters and their measurement units.

The display is updated approximately once per second; you can adjust the update rate via the Display Setup Menu (see <u>Configuring the RDM</u>).

Measurement Units

Depending on the connection scheme of the PM180, the RDM can be ordered for direct wiring or wiring via PTs. Measurement units for voltage and power depend on the connection scheme of the device:

- When direct wiring is used, voltages are displayed in volts with one decimal place, and power in kilowatts with three decimal places.
- When wiring via PT is used, the PT ratio up to and including 4.0, voltages are displayed in volts, and power in whole kilowatts.
- For the PT ratio above 4.0, voltages are displayed in kilovolts, and power in megawatts with three decimal places.

Currents are displayed in amperes with two decimal places.

Primary and Secondary Volts

Volts are displayed in primary (default) or secondary units. Change the volts display mode through the Display Setup Menu (see Configuring the RDM).

Auto Scroll

With Auto Scroll option enabled (see <u>Configuring the RDM</u>), the common measurements display (main screen) scrolls automatically after 30 seconds of uninterrupted use. To stop auto scrolling, press either arrow key.

Auto Return to the Main Screen

With Auto Return option enabled (see <u>Configuring the RDM</u>), the display automatically returns to the main screen from any other measurement screen after 30 seconds of uninterrupted use.

Simple Reset of Accumulated Data

When changing data via the communications is not password protected, you can reset the Min/Max registers, maximum demands and energies from the display mode without entering the reset menu.

Diagnostics Display

diAG	ΛΜΛ
Critic	MM
Error	MM

If a critical error occurs in the PM180, the RDM stops updating the display and shows a diagnostic message "Critic Error". The diagnostic page in the Status Information display (see <u>Status</u> <u>Information Display</u> below) indicates a critical error until the error is cleared. See <u>Device Diagnostic</u> <u>Codes</u> in Appendix F for the list of diagnostic events that cause a critical error.

Clear the device diagnostics error via the RDM from the Status Information display (see <u>Resetting</u> <u>Device Diagnostics</u>), or examine what event caused the critical error and clear the device diagnostics through HyperTerminal (see <u>Using HyperTerminal</u>) or through PAS (see <u>Viewing and</u> <u>Clearing Device Diagnostics</u> in Chapter 10).

Navigation Keys

The RDM navigation keys are used as follows:

PQ

ESC

ENERGY ENTER

MIN/MAX

MIN/MAX - Selects the Min/Max and Max. Demand Display

PQ

PQ - Selects the Power Quality - FLICKER or Total Harmonics Display

ENERGY

ENERGY - Selects the Energy Display

DOWN ARROW

DOWN ARROW - Scrolls forwards through the pages

UP ARROW

UP ARROW - Scrolls backwards through the pages

Pressing both the UP and DOWN arrow keys together returns to the first page within the current display.

The common measurements display (main screen) does not have an indicator LED. If no LED is lit up below the display, this means that the common measurement parameters are being displayed at

this time. To return to the common measurements from another display, just press the same key (the key pointed to by an illuminated LED) until the illuminated LED goes out.

Common Measurements Display

The RDM is displaying the common measurements parameters if none of the display LEDs are illuminated. Press the key indicated by the illuminated LED to return to the common measurements parameters.

The following table shows common measurements pages displayed. The bold font highlights the abbreviated labels that appear in the windows to designate some parameters in addition to the LEDs that show measurement units. Note that phase-to-neutral volts page (with the "P" label) is displayed only in wiring connections with a neutral.

Page	Label	Parameter	Units LED
1		V12	V1/V1-2 - kV1/kV1-2
		V23	V2/V2-3 - kV2/kV2-3
	L	V31	V3/V3-1 - kV3/kV3-1
2		V1	V1/V1-2 - kV1/kV1-2
		V2	V2/V2-3 - kV2/kV2-3
	Р	V3	V3/V3-1 - kV3/kV3-1
3		11	A1
		12	A2
		13	A3
1		Total kVA	kVA/MVA
4		Total power factor	PF
		Total kW	kW/MW
5		Neutral current	A Neut.
		Frequency	Hz
		Total kvar	kvar/Mvar
6		C4	
		14	
7		U. dC.	
		DC voltage	
3		U. Unb.	
		Voltage unbalance	
Э		C. Unb.	
		Current unbalance	
10		Ph.L1	
10		Power factor L1	PF
		kW L1	kW/MW
11	1	kVA L1	kVA/MVA
		Ph.L1	
		kvar L1	kvar/Mvar
12		Ph.L2	
		Power factor L2	PF
		kW L2	kW/MW
13		kVA L2	kVA/MVA
-		Ph.L2	
		kvar L2	kvar/Mvar
14	-	Ph.L3	
• •		Power factor L3	PF
		kW L3	kW/MW
15		kVA L3	kVA/MVA
		Ph.L3	
		kvar L3	kvar/Mvar
6		Fundamental V1/V12	V1/V1-2 - kV1/kV1-2
		Fundamental V2/V23	V2/V2-3 - kV2/kV2-3
	1H	Fundamental V3/V31	V3/V3-1 - kV3/kV3-1
17		Fundamental I1	A1
. /		Fundamental 12	A2
	1H	Fundamental 13	A3
18		01H	n_
10		Fundamental total power factor	PF
			kW/MW
	1	Fundamental total kW	KVV/IVIVV

Phase Powers Readings

In addition to three-phase power, the RDM shows per-phase power readings in configurations with a neutral. By default, they are disabled. See <u>Configuring the RDM</u> on how to enable per-phase power readings in your RDM.

Fundamental Harmonic Readings

The RDM shows volts, currents, total power factor and active power for the fundamental harmonic if they are enabled through the Display Setup Menu (see <u>Configuring the RDM</u>).

Min/Max and Max. Demand Display

Press the MIN/MAX key. The MIN/MAX LED is illuminated. Use the UP/DOWN arrow keys to scroll through Min/Max and Max. Demand measurements.

The following table shows Min/Max display pages. Note that volts readings are phase-to-neutral in 4LN3 and 3LN3 wiring modes, and phase-to-phase in all other modes.

Page	Label	Parameter	Units LED
1		Minimum V1/V12	V1/V1-2 - kV1/kV1-2
		Minimum V2/V23	V2/V2-3 - kV2/kV2-3
	Lo	Minimum V3/V31	V3/V3-1 - kV3/kV3-1
2		Minimum current I1	A1
		Minimum current I2	A2
	Lo	Minimum current 13	A3
3		Minimum total kVA	kVA/MVA
		Minimum total power factor	PF
	Lo	Minimum total kW	kW/MW
4		Minimum neutral current	A Neut.
		Minimum frequency	Hz
	Lo	Minimum total kvar	kvar/Mvar
5		Maximum voltage V1/V12	V1/V1-2 - kV1/kV1-2
		Maximum voltage V2/V23	V2/V2-3 - kV2/kV2-3
	Hi	Maximum voltage V3/V31	V3/V3-1 - kV3/kV3-1
6		Maximum current I1	A1
		Maximum current I2	A2
	Hi	Maximum current I3	A3
7		Maximum total kVA	kVA/MVA
		Maximum total power factor	PF
	Hi	Maximum total kW	kW/MW
8		Maximum neutral current	A Neut.
		Maximum frequency	Hz
	Hi	Maximum total kvar	kvar/Mvar
9		Maximum volt demand V1/V12	V1/V1-2 - kV1/kV1-2
		Maximum volt demand V2/V23	V2/V2-3 - kV2/kV2-3
	Hd	Maximum volt demand V3/V31	V3/V3-1 - kV3/kV3-1
10		Maximum ampere demand I1	A1
		Maximum ampere demand I2	A2
	Hd	Maximum ampere demand I3	A3
11		Maximum sliding window kVA demand	kVA/MVA
		Power factor (import) at maximum kVA demand	PF
	Hd	Maximum sliding window kW import demand	kW/MW

Power Quality Display

Press the THD/TDD key. The THD or TDD LED illuminates. Use the UP/DOWN arrow keys to scroll through harmonics measurements.

The following table lists the available display pages. Note that voltage harmonics readings are phase-to-neutral in 4LN3 and 3LN3 wiring modes, and phase-to-phase in all other modes.

Page	Label	Parameter	Units LED
1		THD V1/V12	V1/V1-2 - kV1/kV1-2
		THD V2/V23	V2/V2-3 - kV2/kV2-3
	thd.	THD V3/V31	V3/V3-1 - kV3/kV3-1
2		THD I1	A1
		THD I2	A2
	thd.	THD 13	A3
3		TDD I1	A1
		TDD I2	A2

Page	Label	Parameter	Units LED
	tdd.	TDD 13	A3
4		K-Factor I1	A1
		K-Factor I2	A2
	HF	K-Factor I3	A3
5 ¹		Pst V1/V12	V1/V1-2 - kV1/kV1-2
_		Pst V2/V23	V2/V2-3 - kV2/kV2-3
	PSt	Pst V3/V31	V3/V3-1 - kV3/kV3-1
6 ¹		Plt V1/V12	V1/V1-2 - kV1/kV1-2
-		Plt V2/V23	V2/V2-3 - kV2/kV2-3
	PLt	Plt V3/V31	V3/V3-1 - kV3/kV3-1

Energy Display

Press the ENERGY key. The MVAh, Mvarh, or MWh LED illuminates. Use the UP/DOWN arrow keys to scroll through energy measurements.

The following table shows energy display pages.

Page	Label	Parameter	Units LED
1		Ac.En.	
		IP.	
		MWh import	MWh
2		rE.En.	
		IP.	
		Mvarh import	Mvarh
3		AP.En.	
		MVAh	MVAh
4		Ac.En.	
		EP.	
		MWh export	MWh
5		rE.En.	
		EP.	
		Mvarh export	Mvarh
6		U-h	
		Volt-hours	
7		A-h	
		Ampere-hours	

Status Information Display

The RDM has separate status information pages accessible through the MAIN RDM menu. For information on navigating in the RDM menus, see "Using the Menus".

To enter the Status Information Display:

- 1. From the Data display, press SELECT to enter the Main Menu. The "STA" window flashes.
- Press ENTER to enter the Status Information Display. Use the UP/DOWN arrow keys to scroll through the status pages.

To exit the Status Information Display:

- 1. Press ESC to return to the Main Menu.
- 2. Press ESC to return to the Data display.

The Status Information Display allows you to view Device Diagnostics, status of digital inputs and relays, counters and a phase rotation order. It is especially useful when you connect the PM180 inputs and outputs to external equipment.

The table below lists the status information pages.

Page	Parameter	Description
1	diAG	When a critical error occurs, the "Critic.
	Critic	Error" message is displayed (see
	Error/nonE	<u>Diagnostics Mode</u>)
2	rEL.	
	1.2.3.4.5.6	

Page	Parameter	Description
	Relay #1-6 status	0 = relay is open, 1 = relay is closed
3	St.In	
	1.2.3.4.5.6	
	Digital (status) Inputs #1-#6	0 = open, 1 = closed
4	St.In	
	7.8.9.A.b.C	
	Digital (status) Inputs #7-#12	0 = open, 1 = closed
5	Cnt.1	
	Counter #1	
6	Cnt.2	
	Counter #2	
20	 Cnt.16	
	Counter #16	
21	PHAS.	
	rOt.	
	Phase rotation order (POS/NEG/ERR)	

Resetting Counters

When changing data is not password protected, you can reset the counters from the Status Information Menu display without entering the reset menu:

- 1. Select a display page where the counter you want to reset is displayed.
- While holding the SELECT key, press and hold the ENTER key for about 5 seconds until the displayed data is reset to zero.

Resetting Device Diagnostics

When the Device Diagnostics page shows a critical error, you can clear it from this page:

- 1. Select the Device Diagnostics page.
- 2. While holding the SELECT key, press and hold the ENTER key for about 5 seconds until the displayed data is reset to NONE.

Using the Menus

The RDM menus allow you to configure your RDM display and set up primary parameters in the PM180, such as time, basic device configuration, serial ports settings, security settings (passwords and protection status). Through the RDM menus, you can also easily reset main accumulated values, such as device counters, energy registers, maximum demands, Min/Max log, and device diagnostics.

Navigation Keys

In the RDM menus, the navigation keys are used as follows:

SELECT

SELECT - Selects an active window (selected window is flashing)

ENTER

ESC

ENTER - Enters menu/sub-menu or confirms changes made in the active window

PQ ESC

SELECT

ENERGY

ENTER

ESC - Returns to a higher menu or aborts changes made in the active window

UP ARROW

UP ARROW - Scrolls options forwards or increments a number in the active window

DOWN ARROW

DOWN ARROW - Scrolls options backwards or decrements a number in the active window

Selecting Menus

To access the RDM menus, press the SELECT key. The MAIN menu is open as shown at left. The MAIN menu entries are as follows:

ΛWΛ
ΛΜΛ
ΛMΛ

- StA Status Information Display (see <u>Status Information Display</u> above)
- OPS Setup Options Menu (allows reviewing setups without changing)
- CHG Setup Change Menu (allows changing setups)

To enter the Status Information Display:

- 1. If the StA window is not a current active window, use the SELECT key to activate it.
- 2. Press the SELECT key to enter the Status Information Display

For viewing the RDM or the PM180 setup options:

- 1. Press the SELECT key to activate the OPS window.
- 2. Press the SELECT key to enter the Setup Options Menu.

To change the RDM or the PM180 setup, or to clear the accumulated values:

- 1. Press the SELECT key to activate the CHG window.
- 2. Press the SELECT key to enter the Setup Options Menu.

Entry to this menu can be password protected.

After entering either OPS or CHG menu, the list of setup menus is displayed in the upper window as shown at left. Use the Up/Down keys to scroll through the menus. Press ENTER to enter the selected menu.

Entering a Password

The setup menus can be secured by a user-defined 8 digits password. The device is shipped with password protection disabled. To enable password protection or to change a password, see <u>Access Control Menu</u>.

If authorization is required, the Password menu appears as shown left.

To change the RDM or the PM180 setup, or to clear the accumulated values:

- 1. Set the first digit using the Up/Down arrow keys.
- 2. Press SELECT to advance to the next digit.
- Set the other password digits in the same manner.
- 4. Press ENTER to confirm the password.

If the password entered is incorrect, you are returned to the previous menu.

Entering Numbers

_		
	bASc	MM
	Pt	VWV
	200.0	ΛWV

To change a number in the active (flashing) window, use the Up/Down arrow keys. If you press and release the arrow key, the value is incremented or decremented by

tation Automation Unit

one. If you press and hold the key, the value in the window is updated approximately twice per second. If you hold the key for more than 5 seconds, the position of the digit being changed moves to the adjacent higher digit.

To accept the new value, press ENTER.

To abort changes, press ESC.

Configuring the RDM

diSP	VWV
UPdt	λWV
1.0	νwν

To change communication or display options for your RDM, select "diSP" from the menu list.

The following table lists available display options, their default settings and ranges.

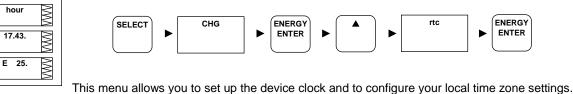
Label	Option	Range	Default	Description
Updt	Update rate	0.1-10.0 sec	1 sec	Defines the interval between display updates
ScrL	Auto scroll	NONE, 2-15 sec	NONE	Disables auto scroll or defines the scroll interval for the main data display
rEtn	Auto return to the main screen	diS, En	diS	Disables or enables auto return to the main display after 30 seconds of uninterrupted use
Uolt	Primary/Secondary volts units	Pri, SEc	Pri	Sets primary or secondary units for volts display
Ph.P	Phase powers display mode	diS, En	diS	Disables or enables phase powers in the main display
Fund.	Fundamental values display mode	diS, En	diS	Disables or enables fundamental values in the main display
dAtE	Date order	dnY, ndY, Ynd,	ndY	Defines the date order in the RTC display
Addr	Master PM180 device address	1-247	1	The target PM180 device address (must match the PM180 COM3 port setting)
bAud	Baud rate	4800-115200	19200	The RDM port baud rate (must match the PM180 COM3 port setting)
dAtA	Data format	8n	8n	The RDM port data format (must match the PM180 COM3 port setting)

To select a display option:

- 1. Press SELECT to activate the middle window.
- 2. Use the Up/Down arrow keys to scroll to the desired option.

To change the display option:

- 1. Press SELECT to activate the lower window.
- 2. Use the Up/Down arrow keys to set the desired option.
- 3. Press ENTER to confirm your changes and to store your new setting, or press ESC to discard changes.


To exit the display menu:

From the middle window, press ESC or ENTER.

Configuring the PM180

The RDM allows you to set up only limited number of parameters in your PM180, such as basic configuration settings and communications settings for serial ports. All other settings can be made through HyperTerminal and PAS.

Clock Setup Menu

The following table lists available options.

Label	Option	Format/Range	Default	Description
nour	Time	hh.mm.ss		The time is displayed as hh.mm.ss, where the hours and minutes are shown in the middle window separated by a dot, and the seconds - in the lower window.
		E		The letter "E" at left shows that the time is locked, i.e., is synchronized to the GPS satellite time
		U		The letter "U" at left shows that the time is unlocked, i.e., the satellite signal was lost and the GPS receiver runs in freewheeling mode
date	Date	YY.MM.DD, MM.DD.YY, DD.MM.YY		The date is displayed as per the user definition, where the first two items are shown in the middle window, and the last one - in the lower window. For instructions on how to select the date format, see <u>Configuring the RDM</u> .
dAY	Day of week	Sun = Sunday IIon = Monday tuE = Tuesday UEd = Wednesday thu = Thursday Fri = Friday Sat = Saturday		The day of the week is displayed in the lower window. It is set automatically when you change the date.
dSt	Daylight savings time option	diS = disabled En = enabled	En	When DST is disabled, the RTC operates in standard time only. When enabled, the device automatically updates the time at 2:00 AM at the pre-defined DST switch dates.
dSt.S	DST start date	Month-week-weekday Week = 1 st , 2 nd , 3 rd , 4 th or LSt (last week of the month)		The DST start date when Daylight Savings Time begins. The DST switch point is specified by the month, week of the month and weekday. By default, DST starts at 2:00 AM on the first Sunday in April of each year.
dSt.E	DST end date	Month-week-weekday Week = 1 st , 2 nd , 3 rd , 4 th or LSt (last week of the month)		The DST end date when Daylight Savings Time ends. The DST switch point is specified by the month, week of the month and weekday. By default, DST ends at 2:00 AM on the last Sunday in October of each year.
OFFSET	Local time zone offset, min	-720 to 720 min	-300 (Eastern Time)	Local offset in minutes from UTC (Universa Coordinated or Greenwich Mean Time)

To select a setup option, use the Up/Down arrow keys from the upper window.

To change the time, date, DST setting or local time offset:

- 1. Press SELECT to activate the desired item. When you enter the time setup display, the hours and minutes indications are frozen to allow you to adjust them.
- 2. Use the Up/Down arrow keys to set the desired value.
- 3. Set the other option items in the same manner.
- Press ENTER to confirm your new settings, or press ESC to discard changes. If you confirm the time change and the seconds window is not currently active, the seconds stay unchanged.

To reset seconds:

- 1. Press SELECT to activate the seconds window.
- 2. Press ENTER.

To exit the menu: From the upper window, press ESC or ENTER.

Basic Setup Menu

This menu allows you to configure the basic device settings of the PM180 that define the general operating characteristics of the device. To enter the Basic Setup menu, select "bASc" from the menu list.

The following table lists available options, their default settings and ranges.

Label	Option	Range	Default	Description
ConF	Wiring connection mode (configuration)	See Table below	4Ln3	The wiring connection of the device
Pt ¹	V1-V3 PT ratio	1.0 - 6500.0	1.0	The phase potential transformer ratio
				(primary to secondary ratio)
Pt.SEc	V1-V3 PT secondary	10 - 690 V	120	The phase potential transformer's
				secondary phase-to-phase voltage
Pt.4 ¹	V4 PT ratio	1.0 - 6500.0	1.0	The V4 potential transformer ratio (primary
				to secondary ratio)
Pt.4SEc	V4 PT secondary	10 - 690 V	120	The V4 potential transformer's secondary
- 2				voltage
Ct ²	I1-I3 CT primary current	1 - 10000 A	5	The primary rating of the phase current
				transformer on standard (20A/10A) inputs
Ct.4 ²	I4 CT primary current	1-10000 A	5	The primary rating of the I4 current
				transformer on standard (20A/10A) inputs
Ct.E. ²	11x-I3x CT primary	1 - 10000 A	5	The primary rating of the phase current
	current			transformer on extended (100A) inputs
Ct.4.E. ²	4x CT primary current	1 - 10000 A	5	The primary rating of the I4x current
				transformer on extended (100A) inputs
U.dC.	VDC nominal voltage	10-300 V	125	The nominal VDC voltage
FrEq	Nominal frequency	50, 60 Hz	50 (60 for	The nominal power frequency
-			North	
			America)	
PH.Ord.	Phase order	AbC, ACb	AbC	The normal phase sequence
Ld C	11-13 Maximum demand	0 - 10000 A	0	The maximum demand load current for I1-
	load current			I3 current inputs (0 = CT primary)
Ld C4	4 Maximum demand load	0 - 10000 A	0	The maximum demand load current for the
	current			<pre>I4 current input (0 = CT primary)</pre>
Ld C.E.	11x-I3x Maximum demand	0 - 10000 A	0	The maximum demand load current for I1x-
	load current			I3x current inputs (0 = CT primary)
Ld C4.E.	I4x Maximum demand	0 - 10000 A	0	The maximum demand load current for the
	load current			I4x current input (0 = CT primary)

¹ PT Ratio is defined as a relation of the potential transformer's primary voltage rating to its secondary rating. For example, if your potential transformer's primary rating is 14400V and the secondary rating is 120V, then the PT Ratio = 14400/120 = 120.

Available wiring modes are listed in the following table.

Wiring Mode	Description
30P2	β-wire Open Delta using 2 CTs (2 element)
4Ln3	4-wire Wye using 3 PTs (3 element), line-to-neutral voltage readings
3dir2	β-wire Direct Connection using 2 CTs (2 element)
4LL3	4-wire Wye using 3 PTs (3 element), line-to-line voltage readings
3OP3	β-wire Open Delta using 3 CTs (21/2 element)
3Ln3	4-wire Wye using 2 PTs (21/2 element), line-to-neutral voltage readings
3LL3	4-wire Wye using 2 PTs (21/2 element), line-to-line voltage readings
3bLn3	β-wire Broken Delta using 2 PTs, 3 CTs (2½-element), line-to-neutral voltage readings
3bLL3	β-wire Broken Delta using 2 PTs, 3 CTs (21/2-element), line-to-line voltage readings

To select a setup option:

- 1. Press SELECT to activate the middle window.
- 2. Use the Up/Down arrow keys to scroll to the desired option.

To change the display option:

1. Press SELECT to activate the lower window.

- Use the Up/Down arrow keys to set the desired option.
- Press ENTER to confirm your changes and to store your new setting, or press ESC to discard changes.

To exit the menu:

From the middle window, press ESC or ENTER.

⊘ Notes

1. Always specify the wiring mode and transformer ratings prior to setting up setpoints and triggers for the fault and power quality recorders.

2. The maximum value for the product of the phase CT primary current and PT ration is 10,000,000. If the product is greater, the powers and power factors are zeroed.

Demand Setup Menu

This menu allows you to configure the time parameters for calculating power, ampere, volt and harmonic demands. To enter the Basic Setup menu, select "dnd" from the menu list.

The following table lists available options, their default settings and ranges.

Label	Option	Range	Default	Description
P.dP	Power demand period	1, 2, 5, 10, 15,	15	The length of the demand period for power
		20, 30, 60 min		demand calculations
n.P.dP	The number of demand	1-15	1	The number of demand periods to be
	periods in the sliding window			averaged for sliding window demands
d.Snc.In	Power demand sync	Clc (device	Clc	The source input for synchronization of the
	source	clock), di.In.1 -		demand intervals. If a digital input is
		di.In.48 (digital		specified as the source, a pulse front
		input 1-48)		denotes the start of the demand interval
A.dP	Ampere demand period	0 - 9000 sec	900	The length of the demand period for
				ampere demand calculations
U.dP	Volt demand period	0 - 9000 sec	900	The length of the demand period for volt
				demand calculations
H.dP	Harmonic demand period	0 - 9000 sec	900	The length of the demand period for
				harmonic demand calculations

To select an option:

- 1. Press SELECT to activate the middle window.
- Use the Up/Down arrow keys to scroll to the desired option.

To change the option:

- 1. Press SELECT to activate the lower window.
 - 2. Use the Up/Down arrow keys to set the desired option.
 - Press ENTER to confirm your changes and to store your new setting, or press ESC to discard changes.

To exit the menu:

SELECT

From the middle window, press ESC or ENTER.

Communication Setup Menus

CHG

These three menus allow you to configure the main settings for ports COM1-COM3. Additional settings such as delays and timeouts can be configured through HyperTerminal. To enter the desired Port Setup menu for ports COM1-COM3, select "Port.1", "Port.2" or "Port.3' from the menu list.

►

Port

ENERGY

ENTER

Þ

The following table lists available port options, their default settings and ranges.

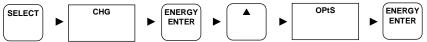
FNFRGY

ENTER

Label	Option	Range	Default
Prot	Communications protocol	rtu - MODBUS RTU ASCII - MODBUS ASCII dnP3 - DNP3.0	rtu
rS	Port interface	232, 422, 485	232 (COM1) 485 (COM2/3)
Addr	Device address	1-247 (MODBUS) 1-255 (DNP3.0)	1
bAud	Baud rate	300-115200 bps	19200
dAtA	Data format	7E, 8n, 8E	8n

To select a port option:

- 1. Press SELECT to activate the middle window.
- 2. Use the Up/Down arrow keys to scroll to the desired option.


To change the port option:

- 1. Press SELECT to activate the lower window.
- 2. Use the Up/Down arrow keys to set the desired option.
- 3. Press ENTER to confirm your changes and to store your new setting, or press ESC to discard changes.

To exit the menu:

From the middle window, press ESC or ENTER.

Device Options Menu

This menu allows you to select some user-configurable device options or put the device into energy test mode. To enter the menu, select "OPtS' from the menu list.

						lt settings and	

Label	Option	Range	Default	Description
P.cAL	Power calculation mode	rEAc (using reactive power), nAct (using non-active power)	rEAc	The method used for calculating reactive and apparent powers (see "Power Calculation Modes" in <u>Advanced Device Setup</u> , Chapter 6)
roLL	Energy roll value	10.E4 = 10,000 kWh 10.E5 = 100,000 kWh 10.E6 = 1,000,000 kWh 10.E7 = 10,000,000 kWh 10.E8 = 100,000,000 kWh 10.E9 =1,000,000,000 kWh	10.E9	The value at which energy counters roll over to zero
test	Energy test mode	OFF, On	OFF	Setting this option to On puts the device into the energy test mode

To select a menu option:

- 1. Press SELECT to activate the middle window.
- 2. Use the Up/Down arrow keys to scroll to the desired option.

To change the option:

- 1. Press SELECT to activate the lower window.
- 2. Use the Up/Down arrow keys to set the desired option.
- 3. Press ENTER to confirm your changes and to store your new setting, or press ESC to discard changes.

To exit the menu:

From the middle window, press ESC or ENTER.

P.cAL	ts MM	OPtS
	al MM	P.cAl
	le M	rEAc

SE

Access Control Menu

PASS	VWV
0000	ΛMΛ
0000	ΛWΛ

Conn=on.Erdi	►	CHG	►	ENERGY		►	AccS		
E									

This menu allows you to change the user password and enable or disable the device security. To enter the menu, select "AccS' from the menu list.

To select a menu option, use the Up/Down arrow keys to scroll to the desired option. To change the password:

- 1. Select "PASS" in the upper window using the Up/Down arrow keys.
- 2. Press SELECT to activate the first digit.
- 3. Set the first digit using the Up/Down arrow keys.
- 4. Press SELECT to advance to the next digit.
- 5. Set the other password digits in the same manner.
- 6. Press ENTER to confirm your changes and to store your new setting, or press ESC to discard changes.

To enable or disable password protection:

- 1. Select "CtrL" in the upper window using the Up/Down arrow keys.
 - 2. Press SELECT to activate the lower window.
 - 3. Use the Up/Down arrow keys to set the desired option. Select "On" to enable security, select "OFF' to disable password protection.
 - 4. Press ENTER to confirm your changes and to store your new setting, or press ESC to discard changes.

To exit the menu:

From the upper window, press ESC.

○ Note

The PM180 uses the same password for all communications ports. The password you enter is effective for all ports, as well as in HyperTerminal, Telnet and PAS.

Reset Menu

This menu allows you to clear the energy and maximum demand accumulators, Min/Max log, counters and device diagnostics in your PM180. To enter the Reset menu, select rESEt from the menu list.

The following table lists available options.

Label	Description
A.dnd	Clears maximum ampere demands
P.dnd	Clears maximum power demands
dnd	Clears all maximum demands
Enrg	Clears all total energies
Lo.Hi	Clears Min/Max log
tOU.d	Clears summary and TOU maximum demands
tOU.E	Clears summary and TOU energy registers
Cnt	Clears all counters
Cnt1 - Cn16	Clears counter #1 to #16
diAG	Clears device diagnostics

To reset the desired value:

- 1. Press SELECT to activate the middle window.
- 2. Use the Up/Down arrow keys to scroll to the desired option.
- 3. Press SELECT to activate the lower window.

CtrL	VWV
	WW
OFF	VWV

rESEt

A.dnd

do

- 4. Press and hold the ENTER key for about 5 seconds until the "do" label is replaced with "done', and then release the key.
- 5. Press ESC to quit the menu.

Chapter 4 Using Telnet

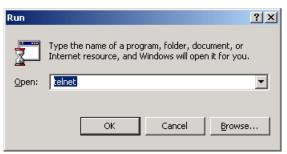
Unlike using HyperTerminal through an RS-232 port, Telnet allows you to access the device through a local network or from any location in the Internet where your device is visible. Just as Windows HyperTerminal, Windows Telnet allows you to configure the network, communications and security settings in your PM180, and to view certain diagnostics information such as device diagnostics and network statistics.

Connecting to the Device

You can establish a telnet connection to the device from Windows HyperTerminal or from Windows Telnet Client.

Running Telnet from HyperTerminal

- 1. Run HyperTerminal from the Windows Start -> Programs -> Accessories -> Communications menu.
- 2. Type a name for your new connection and click OK.



 In the "Connect Using" box, select TCP/IP (Winsock). In the "Host address" box, type the PM180 IP address. Leave the default Telnet port number 23 unchanged. Click OK.

Connect To	<u>? ×</u>
🧞 SA300 T	elnet
Enter details for	the host that you want to call:
<u>H</u> ost address:	192.168.0.212
Port nu <u>m</u> ber:	23
Connect using:	TCP/IP (Winsock)
	OK Cancel

Running the Telnet Client on Windows XP and other

1. From the Start menu, select Run, type telnet and click OK.

The following text appears in a window:

Microsoft (R) Windows 2000 (TM) Version 5.00 (Build 2195)

Welcome to Microsoft Telnet Client

Telnet Client Build 5.00.99206.1

Escape Character is 'CTRL+]'

Microsoft Telnet>

Type open followed by the device IP address, for example:

Microsoft Telnet>open 192.168.99.73

Opening a Telnet Session

When a telnet connection is established, the PM180 Telnet server prints a list of the available commands as follows:

PM180 Telnet commands -----h or ? - Display this text I - Display firmware information password - Password setting

time [hh:mm:ss]	- Time
date [dd/mm/yy]	- Date
com[port]	- Serial port settings
net	- Current Network Addresses
ip	- Network settings
log	- Print network log
stat	- Print network statistics
diag	- Print device diagnostics
clrdiag	- Clear device diagnostics
reset	- Reset the device

You are prompted for the password to login, as in the following example:

Login password: *

>

If your login was successful, you are not prompted for the password again until you close your telnet session. The default PM180 password is 0 unless you change it through HyperTerminal, Telnet or the RDM. A password is always required for a telnet session regardless of whether the communications security is enabled or disabled.

After receiving the Telnet prompt ">", you can enter your commands.

When you change the Internet IP address in your device or reset the device through telnet, your current connection is lost and you will need to open a new telnet session.

Closing a Telnet Session

To close the Telnet session, close your telnet client application.

Chapter 5 Using PAS

You need the support PAS software to configure most of the PM180 features, such as digital and analog I/O, recorders, energy and TOU registers.

This chapter gives basic information on how to install and run PAS on your computer, and how to program your device using PAS. See Chapter 6 "Programming the PM180" for instructions on how to program particular features in your PM180.

To run PAS, you need at least Windows XP installed on your computer. PAS does not run properly on Windows 95. Under Windows NT, USB communications is not available.

Installing PAS

To install PAS on your computer:

1. Insert the installation CD supplied with your PM180 into CD drive.

3. Click on your CD drive icon, select the PAS installation directory, and then

- double click on Setup (shown as an Application type file).
- 4. Follow InstallShield® Wizard instructions on the screen.

2. Open My Computer on your Desktop.

When installation is complete, the PAS icon appears on your Desktop. Double click on the PAS icon to run PAS.

For general information on how to work with PAS, see the "PAS Getting Started" guide supplied on the installation CD.

Installing the USB Driver

To take an advantage of the USB communications, install the PM180 USB driver on your PC.

Connect the PM180 to your PC's USB port using the supplied USB cable. When the PM180 is powered up, Windows automatically detects the device as you connect it to a PC and launches the hardware installation wizard.

Windows XP Installation

1. The "Found New Hardware Wizard" dialog box is displayed.

Found New Hardware Wizard	
	Welcome to the Found New Hardware Wizard
	This wizard helps you install software for:
	PM180
- Mart	If your hardware came with an installation CD or floppy disk, insert it now.
	What do you want the wizard to do?
	Install the software automatically (Recommended)
	C Install from a list or specific location (Advanced)
	Click Next to continue.
	< Back Next > Cancel

2. Insert the PAS Installation CD into the CD ROM Drive, select "Install the software automatically", and then click "Next". Windows XP finds and installs the required driver automatically.

3. Click "Finish" to complete installation.

Creating a New Site for your Device

PAS keeps all communication and configuration data for your device in a database called a site database. When configuring your device, store all setups to the site database so that PAS recognizes device properties regardless of whether the device is online or offline.

When installing PAS on your computer, the "Sites" directory is created in the PAS installation directory. It is advised to keep here all your site databases.

To create a new database for your device:

1. Select Configuration from the Tools menu, and then click Sites at right on the Instrument Setup tab.

Configuration	X
Instrument Setup Connection	
Site: PM180	Model: PM180
Communication	Instrument Options
Serial Port/Modem Site	Voltage Range: 690V+20%
USB Port Internet Site	CT Secondary: 5A
Device Address: 1	I4 CT Secondary: 5A 💌
Device ID: 1	Current Overrange: x400%
Sampling Rate, s: 1	Analog Output:
Comment	Analog Expander:
	Memory Module: 256MB
	PQ Option: EN 50160 Sites
	OK Cancel Apply Help

2. From the "Look in" box, select the directory where a new database will be stored. By default, it's the "Sites" directory. Type a site name for your device in the "File name" box, click New, and then click OK.

Select a site	database			<u>?</u> ×
Look in: [Sites	•	🗧 🗈 💣	•
BFM DefaultSite	EM920	PM130 PM130_Cal PM135 PM135	國 PM175 國 PM175 國 PM180	i_sc 🖬 : I 🖬 :
EM133 EM133_ne EM133-R	ा EM920_GPRS w विETC2002 ब ezPAC	國 PM172 國 PM174 國 PM174_L	PM295 RGM RGM16	
•				Þ
File name:	PM180		[ОК
Files of type:	Access Database (*.m	db)	•	New
Comment:				Duplicate
				Cancel

- 3. On the Instrument Setup tab, select your device model in the "Model" box.
- 4. In the Instrument Options group boxes, specify the standard current input option for your device, and select the size of the onboard logging memory. Set the current over-range to "×400%" if your device has 20A (ANSI) standard current inputs, or to "×200%" for 10A (IEC) current inputs.
- 5. You can add any comments into the "Comments" box, such as device location or any other data concerning this particular site.

Setting up Communications

You can communicate with your devices via a PC RS-232 serial port, through the Internet, via either a local Ethernet, or a wireless CELLULAR (GPRS or 3G) Dial-Up connection, and via the USB port through a modem, the Internet, or the USB port.

To configure your communications with the PM180:

- 1. Select Configuration from the Tools menu. Under the Communication group on the Instrument Setup tab, select the type of a connection for your device.
- Set the device communication address you assigned to the PM180. When communicating via the Ethernet or a CELLULAR modem, the PM180 responds to any address you select.
- 3. In the "Sampling Rate" box, select a rate at which PAS updates data on the screen when polling the device via the PAS Data Monitor.

The communication protocol and port settings must match the settings made in your device.

Communicating through a Serial Port

Select Serial Port/Modem Site on the Configuration tab, and then click on the Connection tab to configure your serial port settings.

Selecting the Communications Protocol

1. On the Connection tab, click Protocol.

Pro	otocol Setup
[
	Response Timeout: 🔀 [ms]
	Break Timeout: 20 📑 [ms]
	<u>R</u> etries [15] 1
	Transmission <u>D</u> elay: 0 🛨 [ms]
	Protocol: Modbus RTU
	OK Cancel

- 2. In the "Protocol" box, select the same communications protocol as you have in your device.
- 3. The remaining settings in this dialog do not normally need to be changed.
- 4. In the "Response Time-out" box, define the maximum time that PAS should wait for the meter response before announcing a failure. When communicating through a CELLULAR modem, this time may require some adjustment.
- 5. The "Break Time-out" box defines the maximum idle time that PAS waits after receiving the last message character to close a connection. This setting is important only when PAS is running the Modbus RTU or DNP3 or IEC 60870-5 protocols. It does not affect Modbus ASCII communications. The default value of 10 ms is usually sufficient for reliable communications, but the load on your PC can affect it. If there are many applications running on your PC, PAS might be prevented from responding to received characters fast enough, so it may close the communication while the device is still transmitting a message. If you frequently receive the message "Communication failed", this could mean that "Break Time-out" should be increased. This time is added to the message transfer time, however, increasing it excessively slows down communications.
- 6. The "Retries" box defines the number of attempts that PAS uses to receive a response from the device in the event the communication fails before announcing a communication failure.

Configuring a Serial Port

1. On the Connection tab, select a COM port from the "Device" box, and then click Configure.

Se	rial Port Setup	1
	Baud Rate: 19200	
	Data Bits: 8	
	Stop Bits: 1	
	Parity: No Parity 🗾	
	OK Cancel	

2. Specify the baud rate and data format for the port. Choose the same baud rate and data format as you have set in the device, and then click OK.

Communicating through a Modem (future)

Selecting the Communications Protocol

On the Connection tab, click Protocol, and then select the protocol settings as shown above for a serial port.

Configuring a Modem

- 1. On the Connection tab, select from the "Device" box a local modem installed on your PC through which you communicate with your device.
- 2. Click on Phones to add the phone number of the remote device to the phone list.
- 3. Type the phone number in the "Phone number" box, add comments if you desire, click Add, and then click OK.
- 4. From the "Phone number" box on the Connection tab, select the phone number from the list, and then click OK.

Communicating through the Internet

- 1. Click on the Connection tab.
- 2. Click on the "IP address" and type in the IP address of the PM180.
- In the "Protocol" box, select the communications protocol for the TCP port. PAS automatically adjusts the TCP port number in the "Host Port" box, corresponding to the selected protocol. Use the following references to check the TCP port setting:

502	-	Modbus RTU
20000	-	DNP3.0
2404	-	IEC 60870-5

onfiguration				×
Instrument Setup Connection				
Internet				
O Domain Name:				
I				
IP Address	Wait for answer: 30	÷ [sec]	—— Dial-up Conne	ection
192 . 168 . 0 . 203	<u>R</u> etries [15]: 1	-	AutoDial	
Host Port: 502		_	Connection:	
Host Port: 502 🛨	Protocol: Modbus RTU	_	1	_
Serial Port / Modem				
Device: COM1	v	Configure	Protocol	Remote
Phone Number:		DI		
	<u>_</u>	Phones	Connect	Hangup
		ОК	Cancel App	. I Unio
			Cancel <u>App</u>	ly Help

4. You can also adjust the amount of time that PAS waits for a connection before announcing an error and the number of retries PAS uses to receive a response from the device if communications fail.

Communicating through a CELLULAR (GPRS-2G or 3G) Modem

Configuring a Dial-up CELLULAR (GPRS-2G or 3G) Connection

To communicate through a CELLULAR modem:

- 1. On the Instrument Setup tab, select Internet Site.
- 2. Click on the Connection tab.

onfiguration				×
Instrument Setup Connection	ו 🗌			
- Internet				
C Domain Name:				
IP Address	Wait for answer, sec: 30	-	Dial-up Conn	ection ——
172 . 16 . 167 . 22	24		🔽 AutoDial	
	<u>R</u> etries: 1		Connection:	
Host Port: 502 🛨	Protocol: Modbus RTU/TCP	•	GPRS Connection t	o *99# 💌
- Serial Port / Modem				
		0 "		
Device: COM1	<u></u>	Configure	Protocol	Remote
Phone Number:	7	Phones	Connect	Hangup
		ОК С	Cancel <u>Appl</u>	y Help

- Click on the "IP address" and type in the IP address your meter got from the CELLULAR provider when registering on the CELLULAR network. You can find the meter CELLULAR IP address on the GPRS page in the Device Info display (see <u>Device Info Display</u> in Chapter 3) or via the Dial-Up Networking setup dialog in PAS (see Modem/GPRS IP Address in <u>Setting-Up Dial-Up GPRS Network</u> in Chapter 5)
- In the "Protocol" box, select the communications protocol for the PM180 GPRS TCP port. The host port is set automatically as you select the protocol. Select "Modbus RTU/TCP" for Modbus/TCP, or "DNP3" for DNP3/TCP.
- 5. In the "Wait for answer" box, adjust the time that PAS should wait for a connection before announcing an error and the number of retries that PAS should use to receive a response from the device if communications fail.
- 6. In the "Connection" box, select the Dial-up connection you created for the PM180. See Dial-Up Networking for information on how to create a Dial-up connection in Windows.
- 7. Check the AutoDial box, if you wish PAS to automatically connect to your meter every time you access it from PAS; otherwise you must manually dial your connection.

Communicating through a USB

On the Instrument Setup tab, click USB Port, and then click OK.

Setting Up the Device

Creating Setups for the Device

PAS allows you to prepare setup data for your device off-line without the need to have it connected to your PC.

Select the device site from the list box on the PAS toolbar, and then select the desired setup group from the Meter Setup menu. Click on the tab with the setup you want to create or modify and fill in the boxes with the desired configuration data for your device. Click the "Save as..." button to store the data to the site database.

⊘ Note

Always set up and store the Basic Setup data to the site database first. PAS uses this data as a reference when arranging other device setup.

To save your setup to another site database, select it from the file pane. Click OK.

Copying Setups to the Device Database

To reuse setups from another site, you can simply copy them to your present site database. Click Open, select the desired site database, and then click OK. The opened setup is copied to your site database.

You can also copy all setups from one site database into another site's database. Select a device site from the list box on the toolbar from which you want to reproduce setups, and then select "Copy to..." from the Meter Setup menu. Select the site database to which to copy setups, and then click OK.

Downloading Setup to the Device

PAS allows you to update each setup in your device one at time or to download all setups together from the site database.

To update a particular setup in your device, check the On-line button on the PAS toolbar, select a device site from the list box, and then select the desired setup group from the Meter Setup menu. Click on the tab of the setup you want to download to the device, and then click Send.

To download all setups to your device at once, check the On-line button O on the PAS toolbar, select the device site from the list box, and then select Download Setups from the Meter Setup menu.

Uploading Setup from the Device

To upload the setup from the device to the site database, check the On-line button 3 on the PAS toolbar, select the device site from the list box, and then select Upload Setups from the Meter Setup menu.

Chapter 6 Programming the PM180

This chapter describes how to configure the PM180 for your particular environment and application using PAS. To access your device configuration options, you should create a site database for your device as shown in Chapter 6.

Authorization

If the device is password protected (see <u>Access Control Menu</u> in Chapter 3 and <u>Changing the</u> <u>Password and Security</u> in Chapter 3), you are prompted for the password when sending the new setup data to the device.

Authorization Required 🛛 🔀						
Password: 0						
ОК	Cancel					

Enter the password and click OK. If your authorization was successful, you are not prompted for the password again until you close the dialog window.

Changing Port Settings

Setting Up Communication Ports

To enter the setup dialog, select the site from the list box on the PAS toolbar, select Communications Setup from the Meter Setup menu, and then click on the Serial Ports Setup tab. In the Port box, select the desired device port.

M180_U5B - Communication Setup						
SNTP Client Setup TCP Notificati	ion Client Setup					
Network Setup ExpertPower	Client Setup Serial Ports Setup					
Port COM1	-					
	Setup					
Protocol	Modbus RTU					
Interface	RS-232					
Device Address	1					
Baud Rate	19200					
Data Format	8N 💌					
CTS	OFF 🗨					
RTS	OFF 🗨					
Response Delay, ms	5					
Character Timeout, ms	4					
Open Save as Default	Print Send Receive					
40	Cancel Apply Help					

To change the port settings in your device, select desired port parameters, and then click Send. For the available communication options, see <u>Communication Setup Menus</u> in Chapter 3.

Setting Up the ETHERNET - Local Network

To enter the setup dialog, select the device site from the list box on the PAS toolbar, select Communications Setup from the Meter Setup menu, and then click on the Network Setup tab.

To change the Ethernet settings in your device, select desired parameters, and then click Send. For more information, see <u>Configuring the Network</u> in Chapter 3.

PM180_USB - Communication Setup				×
SNTP Client Setup	on Client Setup Client Setup		ontrol Ports irts Setup	
	Current Netv	vork Settings		1
Ethernet IP Address		192.168.0.	203	
Ethernet Subnet Mask		255 .255 .255 .	0	
Ethernet Default Gate	way	192.168.0.	1	
MAC Address		0005F0000001		
	Networ	k Setup		
Device IP Address		192.168.0.	203	
Network Subnet Mask		255 .255 .255 .	0	
Network Default Gate	way	192.168.0.	1	
Use DHCP		NO	•	
TCP Service Port				
Primary DNS IP Addres		0.0.0.		
Secondary DNS IP Ad	dress	0.0.0.	0	
Open Save as	Default	Print	Send	Receive
	OK	Cancel	Apply	Help

Setting-Up CELLULAR - Public Network

Select Communications Setup from the Meter Setup menu, and then click on the Dial-Up Networking Setup tab.

PM180 - Communication Setup						
TCP Notification Client Setup Network Setup Dial-Up) Networking	Direct Cor	trol Ports ^o Client Setup			orts Setup
	Curre	ent Network S	ettings			
Local IP Address	Γ	82.102.15	7.231			
	Co	onnection Opti	ons			
Local IP Address	Γ	82 .102.15	7.231			
Network Subnet Mask	Γ	255.255.0	. 0			
Remote IP/Gateway Ad	dress	192.168.10	.204			
Redial Attempts	3	3				
Connection Timeout, s	3	30				
Time Between Redial A	ttempts, s	10				
Idle Time Before Hangir	Idle Time Before Hanging Up, s					
Rings Before Answer	Rings Before Answer					
Modem Initialization	Modem Initialization		&C1			
Auto-reset Period, hour	s (0=never)	0				
		ISP Account				
Phone Number		*99***1#				
Login Name						
Login Password						
GPRS Access Point Na	me (APN)	publicip.net.il				
1	1	1	1		1	
Open Save as	Defau	ilt	Print	Ser	nd	Receive
		ОК	Cancel		Apply	Help

The following table lists available connection options.

Parameter	Options	Default	Description

Parameter	Options	Default	Description			
Connection Options						
IP Address		192.168.10.203	The IP address on the dial-in modem PPP network. Not used in a GPRS network.			
Network Subnet Mask		255.255.0.0	The PPP/GPRS network subnet mask			
Network Default Gateway		192.168.10.204	The PPP network default gateway. Not used in a GPRS network.			
Redial Attempts	0-1000, 0 = forever	0	The number of dial attempts to connect to a remote modem if a connection was unsuccessful.			
Connection Timeout	0-9999 sec	120	The modem cancels a call if not connected within the connection timeout time.			
Time Between Redial Attempts	0-9999 sec	60	A time delay between redials.			
Idle Time Before Hanging Up	0-9999 sec 0 = never	0	The modem disconnects a call if idle for more than the specified idle time.			
Rings before Answer	0-99 0 = never	0	The number of rings before the modem answers an incoming call from a remote modem. Not used in a GPRS network.			
Modem Initialization		AT&F&D1&C1	Default modem initialisation string. Do not change.			
		ISP Account				
Phone Number		*99#	The telephone number of the ISP provider. The default number provides a connection to the GPRS network for your PM180 GSM/GPRS modem.			
Login Name			Login name for logging onto the Internet (if required).			
Login Password			Login password for logging onto the Internet (if required).			
GPRS Access Point Name (APN)		internet	The mobile network APN name (consult with your network operator)			

⊘ Note

Do not change the default modem connection options. Consult with your GPRS network operator if the network subnet mask needs to be extended.

Setting-Up SNTP Client

Select Communication Setup from the Meter Setup menu, and then click on the SNTP Client Setup tab.

The SNTP client can provide periodic synchronization of the meter clock with a publicly available SNTP server or with your local server if it supports this service.

To allow clock synchronization via SNTP, select SNTP as a clock synchronization source in $\underline{\text{Local Settings}}.$

PM180 - Commun	M180 - Communication Setup						
TCP Notific Network Setup	ation Client Setup Dial-Up Networking	Direct Control Ports SNTP Client Setup	· · ·	orts Setup			
		SNTP Client Setup					
:	SNTP Client Enabled	YES]			
1	Polling interval, s	600					
1	Primary SNTP Server IP Address	192 . 168 . 127 . 22 192 . 168 . 127 . 24					
1	Secondary SNTP Server IP Address						
Open	Save as Defa	ult Print	Send	Receive			
		OK Cancel	Apply	Help			

The following table lists available options

Parameter	Options	Default	Description
SNTP Client Enabled	NO, YES	NO	Enables operations of the SNTP client
Polling interval, s	60-86400 s	600 s	The time remaining requesting time from the SNTP server
Primary SNTP Server IP Address		192.36.143.151	The IP address of the primary SNTP server
Secondary SNTP Server IP Address		130.149.17.21	The IP address of a secondary SNTP server in the event of temporary unavailability of the primary server

The default SNTP server IP addresses belong to Stockholm and Berlin university servers.

Configuring eXpertPower Client

The PM180 has an embedded eXpertPowerTM client that provides communications with the eXpertPowerTM server – the SATEC proprietary Internet services. Connections to the eXpertPowerTM server are handled on a periodic basis.

To enter the Setup dialog, select the site from the list box on the PAS toolbar, select Communication Setup from the Meter Setup menu, and then click on the ExpertPower Client Setup tab.

SNTP Client Setup	· ·	ation Client Setup er Client Setup	Direct Cor	
Network Setup	Expert own	er cillerit betup	Serial Port	ssetup
	ExpertPow	er Client Setup		
XPW Server I	o Address	207 . 232 . 60	. 18	
XPW Server F	ort	5001		
XPW Client En	abled	NO	▼	
Time to Next S	Session, min	0		
Connection vi	a Network			
Connection Id	e Timeout, min	1		
		1 1	Send	Receiv

The following table lists available options. Refer to your eXpertPower service provider for the correct eXpertPower settings.

Parameter	Options	Default	Description
XPW Server IP Address		207.232.60.18	The IP address of the
			eXpertPower server
XPW Server Port	0-65535	5001	The TCP service port of the
			eXpertPower server
XPW Client Enabled	NO, YES	NO	Enables operations of the
			eXpertPower client
Time to Next Session, min	1-99999		The time remaining to the
			next connection session

NOTES:

- 1. If you do not use the eXpertPower[™] service, do not enable the eXpertPower client in your device.
- 2. Do not change the connection period setting. The eXpertPower server updates it automatically.

Basic Device Setup

Before operating your device, define the basic information about your electrical network. To enter the setup dialog, select the device site from the list box on the PAS toolbar, and then select General Setup from the Meter Setup menu.

Relay Outputs Basic Setup	Counters Transforme Device Options Control/Alarm Setp	er Correction Periodic Ti oints Analog Outputs	imers Local Settings Analog Inputs Digital Inputs
	Basic	Configuration	
	Wiring Mode	4LN3	•
	PT Ratio	1.0	
	PT Secondary (L-L), V	120.0	
	V4 PT Ratio	1.0	
	V4 PT Secondary, V	120.0	
	CT Primary, A	5	
	I4 CT Primary, A	5	
	Nominal Frequency, Hz	60	
	Phase Order	ABC	•
	Der	nand Setup	
	Power Block Demand Period, min	15	
	Number of Blocks in Sliding Demand	1	•
	Power Demand Sync Source	Meter Clock	•
	Volt Demand Period, s	900	
	Amp. Demand Period, s	900	
	Harm. Demand Period, s	900	
Open	Save as Default	Print Send	d Receive

The following table lists available device configuration options.

Option	Range	Default	Description
Basic Configuration			
Wiring connection mode (configuration)	See "Wiring Connections" below	4LN3	The wiring connection of the device
PT ratio ¹ V1-V3 voltage inputs	1.0 - 6500.0	1.0	The phase potential transformer ratio (primary to secondary ratio)

 1 PT Ratio is defined as a relation of the potential transformer's primary voltage rating to its secondary rating. For example, if your potential transformer's primary rating is 14400V and the secondary rating is 120V, then the PT Ratio = 14400/120 = 120

Option	Range	Default	Description
PT secondary (L-L),	10-690 V	120	The phase potential transformer's
V			secondary phase-to-phase voltage
V4 PT ratio	1.0 - 6500.0	1.0	The V4 potential transformer ratio (primary to secondary ratio)
V4 PT secondary, V	10-690 V	120	The V4 potential transformer's secondary voltage
CT primary, A I1-I3 current inputs		5	The primary rating of the phase current transformer on standard (20A/10A) inputs
I4 CT primary, A current	1-10000 A	5	The primary rating of the I4 current transformer on standard (20A/10A) inputs
I4 CT secondary current	1, 5 A	5	The secondary rating of the I4 current transformer on standard (20A/10A) inputs
Nominal frequency, Hz	50, 60 Hz	50 (60 for North America)	The nominal power frequency
Phase order	ABC, CBA	ABC	The normal phase sequence
Demand Setup			
Power Block	1, 2, 5, 10, 15,	15	The length of the demand period for power
demand period, min			demand calculations
	1-15	1	The number of demand periods to be
in sliding window			averaged for sliding window demands
Power demand	,	Meter clock	The source input for synchronization of the
sync source	DI1-DI48		demand intervals. If a digital input is
	(digital inputs		specified as the source, a pulse front
	1-48)		denotes the start of the demand interval
Volt demand	0 - 9000 sec	900	The length of the demand period for
period, s			ampere demand calculations
Amp. demand	0 - 9000 sec	900	The length of the demand period for volt
period, s			demand calculations
Harm. demand	0 - 9000 sec	900	The length of the demand period for
period			harmonic demand calculations

Wiring Connections

Available wiring modes are listed in the following table:

Wiring Mode	Description
30P2	3-wire Open Delta using 2 CTs (2 element)
4LN3	4-wire Wye using 3 PTs (3 element), line-to-neutral voltage readings
3DIR2	3-wire Direct Connection using 2 CTs (2 element)
4LL3	4-wire Wye using 3 PTs (3 element), line-to-line voltage readings
3OP3	3-wire Open Delta using 3 CTs (21/2 element)
3LN3	4-wire Wye using 2 PTs (21/2 element), line-to-neutral voltage readings
3LL3	4-wire Wye using 2 PTs (21/2 element), line-to-line voltage readings
3BLN3	3-wire Broken Delta using 2 PTs, 3 CTs (2½-element), line-to-neutral voltage readings
3BLL3	3-wire Broken Delta using 2 PTs, 3 CTs (2½-element), line-to-line voltage readings

In 4LN3, 3LN3 and 3BLN3 wiring modes, the voltage readings for min/max volts and volt demands represent line-to-neutral voltages; otherwise, they will be line-to-line voltages. The voltage waveforms and harmonics in 4LN3, 3LN3 and 3BLN3 wiring modes represent line-to-neutral voltages; otherwise, they will show line-to-line voltages.

Device Options

This setup allows you to enable or disable optional calculations and change user-selectable device options.

To enter the setup dialog, select the device site from the list box on the PAS toolbar, select General Setup from the Meter Setup menu, and then click on the Advanced Setup tab.

The following table lists available device options.

Option	Range	Default	Description
Power/Energy Options			
Power calculation mode	S=f(P, Q) (using reactive power), Q=f(S, P) (using non- active power)	S=f(P, Q)	The method used for calculating reactive and apparent powers (see "Power Calculation Modes" below)
Energy roll value	10,000 kWh 100,000 kWh 1,000,000 kWh 10,000,000 kWh 100,000,000 kWh 1,000,000,000 kWh	1,000,000,000	The value at which energy counters roll over to zero
Energy Decimal Places	0, 1, 2, 3, 4	0	
TDD Setup			
Max. Load Current, A	0 - 10000 A	СТ	The maximum demand load current for common current inputs (0 = CT primary)
4 Max. Load Current, A	0 - 10000 A	СТ	The maximum demand load current for I4 (0 = CT primary)
Test Mode			
Energy LED pulse rate, Wh/impulse	0.01-100.00	0.10 Wh/pulse	LED pulse constant - the amount of accumulated energy (in secondary readings) giving one pulse via "kWh" and "kvarh" LEDs.
Energy LED Test	Disabled, Wh Pulses, varh Pulses	Disabled	LED located in RDM and RGM, for energy measurement calibration
Data Scales	•		
Volts Scale, V	10-828 V	828 V	The maximum voltage scale allowed, in secondary volts. See <u>Data Scales</u> in Appendix E.
Amps Scale, A	1.0-20.0 A	20	The maximum current scale allowed, in secondary amps. See <u>Data Scales</u> in Appendix E.

Basic Setup Device Options Control// Power Calculation Mode Energy Rol Value Energy Rol Value Tariff Control Number of Tariffs	Power/Energy Option S = f(P,C 1000000 0 Calendar 1	15 2) 0000	Analog Inputs	Digital Inputs
Energy Roll Value Energy Decimals Tariff Control	S = f(P,C 1000000 0 Calendar 1	2) 0000	Y Y	
Energy Roll Value Energy Decimals Tariff Control	S = f(P,C 1000000 0 Calendar 1	2) 0000	Y Y Y	
Energy Roll Value Energy Decimals Tariff Control	S = f(P,C 1000000 0 Calendar 1	2) 0000	V V V	
Energy Roll Value Energy Decimals Tariff Control	1000000 0 Calendar 1	0000	V V V	
Energy Decimals Tariff Control	0 Calendar 1		• •	
Tariff Control	Calendar 1	r	•	
	1	r	-	
Number of Tariffs				
	TDD Setup			
I Max. Load Current, A	СТ			
I4 Max. Load Current, A	СТ			
	Test Mode			
Energy LED Pulse Rate, Wh/impu				
Energy LED Test	Disabled	l		
Votts Scale, V	Data Scales			
Amps Scale, A	20.0			
Anjo Scule, A	20.0			
	1	1	1	1
Open Save as	Default P	Print Send	l Red	ceive

Power Calculation Modes

The power calculation mode option allows you to change the method for calculating reactive and apparent powers in presence of high harmonics. The options work as follows:

1. When the reactive power calculation mode is selected, active and reactive powers are measured directly and apparent power is calculated as:

$$S = \sqrt{P^2 + Q^2}$$

This mode is recommended for electrical networks with low harmonic distortion, commonly with THD < 5% for volts, and THD < 10% for currents. In networks with high harmonics, the following method is preferable.

2. When the non-active power calculation mode is selected, active power is measured directly, apparent power is taken as product $S = V \times I$, where V and I are the RMS volts and amps, and reactive power (called non-active power) is calculated as:

$$N=\sqrt{S^2-P^2}$$

Tariff Control

The PM180 provides three options for switching tariff rates:

- 1. automatic via a programmable TOU calendar schedule (see <u>Configuring the</u> <u>Daily Tariff Schedule</u> for information on configuring tariff change points)
- external via communications by writing a tariff number to the meter tariff register (see the EM720 Modbus Reference Guide for information on the active tariff register location)
- 3. external via digital inputs by providing a tariff code on the meter tariff inputs

If a digital input option is selected, you can use 1 to 3 consequent digital inputs as tariff inputs. The following table shows the number of inputs required depending on the maximum number of used tariff rates.

Number of tariffs	Number of tariff inputs
2	1
3	2
4	2
5	3
6	3
7	3
8	3

The following table shows code combinations that should be provided on the tariff inputs to indicate an active tariff rate.

Tariff rate		Tariff code			
number	Tariff input 1	Tariff input 2	Tariff input 3		
1	Open	Open	Open		
2	Closed	Open	Open		
3	Open	Closed	Open		
4	Closed	Closed	Open		
5	Open	Open	Closed		
6	Closed	Open	Closed		
7	Open	Closed	Closed		
8	Closed	Closed	Closed		

Instrument Transformer Correction Setup

Transformer correction allows you to compensate ratio and phase angle inaccuracies of the voltage and current instrument transformers.

Select General Setup from the Meter Setup menu, and then click on the Transformer Correction tab.

Relay Out	/1 /2 //3	Ratio Correction Factor 1.000 1.000	Transformer Correction nstrument Transformer Corre Phase Angle Error, (+/-) minutes 0	Periodic Timers Local Settings
	/1 /2 /3	Ratio Correction Factor 1.000 1.000	Phase Angle Error, (+/-) minutes	Select a transformer type =
	/1 /2 /3	Factor 1.000 1.000	(+/-) minutes	
	/2 /3	1.000 1.000		to preset a CT
	/2 /3	1.000	0	
V	/3		-	
V	-		0	
		1.000	0	
l I	/4	1.000	0	
	1	1.000	0	
1	2	1.000	0	
	3	1.000	0	
-	4	1.000	0	
1x/	DFR	1.000	0	
12x/	DFR	1.000	0	
3x/	DFR	1.000	0	
4x/	DFR	1.000	0	
				•
		1	1	
	Open	Save as	Default Pr	rint Send Receive

The available options are listed in the following table.

Parameter	Options	Description
Channel	None, V1-V4, I1-I4, I1x/DFR-I4x/DFR	Voltage/ measurement current and current fault recorder channels
Ratio Correction Factor	0.900-1.100	The ratio of the true transformer ratio to the marked ratio
Phase Angle Error	+/-600 minutes	The phase displacement, in minutes, between the primary and secondary values. The phase angle of a transformer is positive when the secondary value leads the primary value.

You define linearity error and phase angle shift error based on the transformer's accuracy characteristics. The compensation is applied over the full operating range of the transformer.

Local Settings

This setup allows you to select the external time synchronization source and daylight savings time options.

To configure the local time options in your device, select the device site from the list box on the PAS toolbar, select General Setup from the Meter Setup menu, and then click on the Local Settings tab.

Basic Setup Dev Relay Outputs	rice Options Control/Alarm Se Counters Transforr	tpoints Analog Outputs Ana ner Correction Periodic Time	alog Inputs Digital Inputs rs Local Settings
	Time	Zone Information	
	Country	Default	•
	Time Zone Offset, GMT +/- min	-300	-
	Daylight Savings Time (DST)	Disabled	•
	DST Start Month	March	•
	DST Start Week of Month	Second	•
	DST Start Weekday	Sunday	•
	DST Start Hour	2	•
	DST End Month	November	•
	DST End Week of Month	First	-
	DST End Weekday	Sunday	•
	DST End Hour	2	•
	Date Order	N/A	
	Clock	Synchronization	
	Time Synchronization Input	NONE	
Open	Save as Default	Print Send	Receive

The available options are described in the following table:

Option	Format/Range	Default	Description
Time Zone Informat	ion		
Time zone offset, GMT +/- min	-720 to 720 min	-300 (Eastern Time)	Local offset in minutes from UTC (Universal Coordinated or Greenwich Mean Time). It is used to produce a local time from the GPS IRIG-B time code.
Daylight Savings Time (DST)	Disabled Enabled	Disabled	When DST is disabled, the RTC operates in standard time only. When enabled, the device automatically updates the time at 2:00 AM at the pre-defined DST switch dates.
DST start month DST start week DST start weekday DST Start Hour	Month-week- weekday-hour Month = Jan-Dec Week = 1^{st} , 2^{nd} , 3^{rd} , 4^{th} or Last (last week of the month) Day = Mon-Sun Hour = $1-6$	March Second Sunday 2	The DST start date when Daylight Savings Time begins. The DST switch point is specified by the month, week of the month and weekday. By default, DST starts at 2:00 AM on the first Sunday in April of each year.
DST end month DST end week DST end weekday DST end Hour	Month-week- weekday-hour Month = Jan-Dec Week = 1^{st} , 2^{nd} , 3^{rd} , 4^{th} or Last (last week of the month) Day = Mon-Sun Hour = 1-6	November First Sunday 2	The DST end date when Daylight Savings Time ends. The DST switch point is specified by the month, week of the month and weekday. By default, DST ends at 2:00 AM on the last Sunday in November of each year.
Clock Synchronizat	•		
Time synchronization	GPS IRIG-B, SNTP, DI1-DI48 (digital input 1-48)		The external port receiving the time synchronization signal. If no external synchronization is used, set this option to IRIG-B: when a signal is not present, the PM180 automatically uses internal RTC clock for time synchronization.

Time Synchronization Source

The PM180 receives the time synchronization signal either from a GPS clock having an IRIG-B time-code output, or from an external device giving a pulse at the beginning of the minute. If the IRIG-B option is selected but the IRIG-B signal is not present on the device input, the PM180 automatically uses its internal RTC clock.

Using the IRIG-B

To use the IRIG-B input, select the GPS IRIG-B option and connect the GPS master clock to the IRIG-B BNC connector on the front of the PM180 IRIG-B Module or to CPU IRIG-B terminal¹.

When the IRIG-B signal is present on the device input, the PM180 automatically synchronizes its clock with the GPS time each second, normally with accuracy better than 1 millisecond if the time is locked to the GPS satellite time. If the GPS clock loses the satellite signal, the clock continues to generate the IRIG-B time code referenced to the last available satellite time, but the time quality may get worse. Such signal losses can last from a few minutes to hours. During such outages the time code generated by the GPS receiver is typically accurate to within a few milliseconds over a 24-hour period.

You can check presence and quality of the IRIG-B signal through the RDM from the <u>Clock Setup</u> <u>Menu</u>, through HyperTerminal (see <u>Testing the GPS Master Clock</u> in Chapter 3) and via the <u>Device</u> <u>Diagnostics</u>.

If the IRIG-B signal is lost, the PM180 changes the time synchronization source to the internal RTC in 5 minutes. When the IRIG-B signal is restored, the device automatically acquires the GPS time.

If the IRIG-B signal is lost or time code quality changes (locked to the GPS satellite time or unlocked), the corresponding events are automatically recorded to the device Event log.

Using SNTP

Enable SNTP client operation and configure it if required (see Setting-Up SNTP Client).

When an SNTP server is not available or when a connection with a server is restored, the corresponding event is automatically recorded to the device Event log.

Using External Minute Pulses

External time synchronization pulses are delivered through one of the PM180 digital inputs. If the digital input is selected as the time synchronization source, the external pulse's edge adjusts the device clock at the nearest whole minute. The time accuracy is affected by the debounce time programmed for the digital input, and by the operation delay of the external relay.

Daylight Savings Time

The daylight savings time option is enabled in the PM180 by default, and the default daylight savings time change points are set for the U.S.A. When the daylight savings time is enabled, the PM180 automatically adjusts the device clock at 02.00 AM when daylight savings time begins/ends.

If the daylight savings time option is disabled, you need to manually adjust the device clock for daylight savings time.

¹ Available in PM180 N3 Version only

Configuring Digital Inputs

The PM180 supports up to three expansion Digital Input (DI) modules with a total of 48 digital inputs (DI1 to DI48). I/O numbers are automatically assigned to the inputs in the order of connection when the device is powered up. For example, if two DI modules are connected to the device, the digital inputs DI1-DI16 belong to the first module, and DI17-DI32 - to the following module. If you insert an I/O module into another slot position and do not change its order, then all digital inputs on the module retain their I/O numbers.

To configure the digital inputs in your device, select the device site from the list box on the PAS toolbar, select General Setup from the Meter Setup menu, and then click on the Digital Inputs tab. The digital inputs that are not present in your device are designated as not available.

Bas	sic Setup	Device Options Con			Device Options Control/Alarm Setpoints Analog Outp		puts 📔 Analog In		Its	
D	igital Inputs		Relay Outputs	Counters		Periodic Timers		Local Settings		
Digital Inputs										
No.	Input Polarity		Pulse Input Mod	le	Pulse Polarity		Debounce Time, ms	SOE Log	Fault Recorder	-
1	NORMAL	•	PULSE MODE	•	NORMAL (N.O.)	•	1	~	~	
2	NORMAL	•	PULSE MODE	-	NORMAL (N.O.)	•	1	~		
3	NORMAL	-	PULSE MODE	-	NORMAL (N.O.)	•	1	~		
4	NORMAL	•	PULSE MODE	-	NORMAL (N.O.)	•	1	~		
5	NORMAL	•	PULSE MODE	•	NORMAL (N.O.)	•	1	~		
6	NORMAL	•	PULSE MODE	-	NORMAL (N.O.)	•	1	~		
7	NORMAL	•	PULSE MODE	•	NORMAL (N.O.)	•	1	~		
8	NORMAL	•	PULSE MODE	•	NORMAL (N.O.)	•	1	~		
9	NORMAL	•	PULSE MODE	•	NORMAL (N.O.)	•	1	~		
10	NORMAL	•	PULSE MODE	-	NORMAL (N.O.)	•	1	~		
11	NORMAL	-	PULSE MODE	-	NORMAL (N.O.)	•	1	~		
12	NORMAL	•	PULSE MODE	-	NORMAL (N.O.)	•	1	~		
13	NORMAL	-	PULSE MODE	-	NORMAL (N.O.)	•	1	~		
14	NORMAL	-	PULSE MODE	-	NORMAL (N.O.)	•	1	~		1
15	NORMAL	•	PULSE MODE	•	NORMAL (N.O.)	•	1	~		
	SOE: Check all Clear all Fault: Check all Clear all									
	Open		Save as	0	Default Print	t	Send	F	Receive	

The available options are described in the following table:

Option	Range	Default	Description
Input Polarity	NORMAL, INVERTING	NORMAL	Defines the input polarity state
Pulse Input Mode	PULSE MODE KYZ MODE	PULSE MODE	Defines the type of a pulse on the input when it receives external pulses. In pulse mode, either leading, or trailing edge of the input pulse is accepted. In KYZ mode, both leading and trailing edges of the input pulse are accepted.
Pulse polarity	NORMAL (N.O.) INVERTING (N.C.)	NORMAL	Selects the active pulse edge that is considered a pulse in pulse mode. For normal polarity, the open to closed transition is considered a pulse. For inverting polarity, the closed to open transition is considered a pulse. It has no meaning in KYZ mode where both transitions are active.
Debounce time, ms	1-100 ms	1	The amount of time the state of the digital input should not change before being accepted as a new state. Too low debounce time could produce multiple events on the input change.
SOE Log	Checked Unchecked	Unchecked	When the box is checked, either transition on the digital input is recorded to the Sequence-of-Events log.
Fault Recorder	Checked Unchecked	Unchecked	When the box is checked, a positive transition on the digital input (open to closed transition event) triggers the Fault recorder.

Debounce Time

The debounce time is assigned to digital inputs in groups of 8 adjacent inputs. So, DI8 has the same debounce time as inputs DI1 through DI7, while DI9 through DI16 are allowed to have another debounce time setting. When you change the debounce time for one digital input, the same debounce time is automatically assigned to all inputs related to the same debounce group.

Recording Digital Input Events to the Sequence-of-Events Log

To log transition events on digital inputs into the Sequence-of-Events log, you only need to check the SOE log boxes for the digital inputs you want to be recorded. If you link a digital input to the Fault recorder, it is automatically connected to the SOE log. The pulse mode settings do not affect the SOE log.

Each digital input is recorded to the SOE log independently. A timestamp is typically accurate to within 1 ms at 60Hz and 1.25 ms at 50Hz. The debounce time is included in the timestamp.

Triggering the Fault Recorder through Digital Inputs

Any digital input can trigger the Fault recorder if its Fault recorder box is checked. When an opento-closed state transition is detected on the digital input, the global "External Trigger" event is generated in the device. If the Fault recorder is enabled (see <u>Device Mode Control</u>), it triggers the Fault recorder to record waveforms or RMS data for the event.

When a number of digital inputs linked to the Fault recorder generate events at the same time, only the first of them triggers the Fault recorder and logs a fault event into the Fault log file. The next external fault event is not triggered until all the digital inputs linked to the Fault recorder are released, but all operations on digital inputs are automatically recorded to the Sequence-of-Events log. This does not affect operations of the internal analog fault triggers that work independently.

Notice that the "External Trigger" event can also be tested through the control setpoints from the "Static Events" trigger group to trigger another action on your selection.

Programming Relay Outputs

The PM180 supports up to three expansion Relay Output (RO) modules with a total of 24 relays (RO1 to RO24). I/O numbers are automatically assigned to the relay outputs in the order of connection when the device is powered up.

The PM180 allows you to program all relay outputs regardless of whether they are actually present in your device or not. The relays that are not present in the device are considered "virtual" relays and can be used in the same way as real relays with the only difference that they cannot transmit signals outside of the device. The "virtual" relays may be with the control setpoints as temporary event storage to transfer events between setpoints.

Each relay can be operated either locally from the control setpoints in response to an internal or external event, or by a remote command sent through communications, or can be directly linked to an internal pulse event produced by the device.

To configure the relay outputs in your device, select General Setup from the Meter Setup menu, and then click on the Relay Outputs tab.

Basic Setup Device Options		Control/Alarm Setpoints Analog C		ts 📔 Analog Outp	utputs 📔 Analog Inpul		g Inputs	
Digital Inputs Relay Outputs			Co	unters	Periodic Timers	Local Settings		
_	Relay Outputs							
No.	Operation Mode	Polarity	Retentive Mode	Pulse Width, ms	Pulse Source	k/Vh/ Pulse	SOE Log	Block
1	UNLATCHED	NORMAL (N.O.)	l					
2	PULSE 💽	NORMAL (N.O.)]	100	🔻			
3	PULSE 💽	NORMAL (N.O.)		100	🔻			
4	KYZ 🗖	NORMAL (N.O.)]	200	kWh IMP PULSE 💌	0.0		
5	UNLATCHED	NORMAL (N.O.)]					
6	LATCHED	NORMAL (N.O.)	NO 🔻					
7	UNLATCHED	NORMAL (N.O.)]					
8	UNLATCHED	NORMAL (N.O.)]					
9								
10								
11								
12								
13								
14								
15								
	SOE: Check all Clear all Block: Check all Clear all							
	Open	Save as	Default	Pri	nt Send	F	leceive	

The available relay options are described in the following table:

Option	Format/Range	Default	Description
Dperation Mode	Unlatched Latched Pulse KYZ	Unlatched	Defines the behavior of the relay in response to local and remote commands Unlatched mode: the relay goes into its active state when the control setpoints is in active (operated) state, and returns into its non-active state when the setpoints is released.
			Latched mode: the relay goes into its active state when the control setpoints goes into active state and remains in the active state until it is returned into its non- active state by another setpoints or by a remote command. Pulse mode: the relay goes into its active state for the specified time, goes into non- active state for the specified time and remains in the non-active state. KYZ mode: the relay generates transition pulses. The relay changes its output state upon each command and remains in this

	Format/Range	Default	Description
Polarity	NORMAL (N.O.) Inverting (N.C.)	Normal	Defines whether the relay is energized or de-energized in its non-active and active (operated) states. With normal polarity, the relay is normally de-energized in its non-active state and is energized in its active (operated) state. With inverting polarity, the relay is normally energized in its non-active state and is de-energized in its active (operated) state. It is called sometimes failsafe relay operation.
Retentive mode	Checked Unchecked	Unchecked	This option is only applicable for latched relays. Normally, when retentive mode is OFF, the relay is always returned into its non- active state upon power up. If the relay is set to be retained, the device restores its status to what it was prior to loss of power.
Pulse width	10-1000 ms	100 ms	The amount of time the pulse relay stays in active state when generating a pulse. The actual pulse width is a multiple of the 1/2-cycle time rounded to the nearest bigger value. The minimum pause time between pulses is equal to the pulse width.
	None kWh IMP PULSE kWh EXP PULSE kWh TOT PULSE kvarh IMP PULSE kvarh EXP PULSE kvarh TOT PULSE kVAh TOT PULSE DMD INTRVL SW DMD INTRVL AMP DMD INTRVL TARIFF INTRVL		Links the pulse relay to the internal pulse event that is to be retransmitted through the relay output as a pulse with a predefined width. The relay must be set into either pulse, or KYZ mode.
kWh/Pulse	0.1-1000.0 1.0	0.0 kWh/Pulse	Defines the pulse weight in kWh units per pulse.
SOE Log	Checked Unchecked	Unchecked	When the box is checked, either transition on the relay output is recorded to the Sequence-of-Events log.
Block	Checked Unchecked	Unchecked	

Recording Relay Events to the Sequence-of-Events Log

To log transition events on relay outputs into the Sequence-of-Events log, check the "SOE Log" boxes for the relay outputs you want to be recorded.

Programming Analog Inputs

The PM180 can be equipped with up to three plug-in 4-channel Analog Input/Output (AI/AO) modules. I/O numbers are automatically assigned to the analog inputs in the order of connection when the device is powered up.

The PM180 automatically converts the AI readings received from the analog-to-digital converter to the user-defined engineering scale and shows the input values in true engineering units, for example, in volts, amps, or degrees, with the desired resolution.

To configure the analog inputs in your device, select General Setup from the Meter Setup menu, and then click on the Analog Inputs tab. If you are programming your device online, Analog inputs that are not present in the device are designated as not available.

		Counters	Energy Pulses		c Timers alog Inputs	Time/Date Digital Inputs
No.	АІ Туре	Zero Scale (0/4mA)	Full Scale (1/20mA)	Dec. Places	Value	e Label
1	+/-1 mA	0.0	120.0	1	V5	
2	+/-1 mA	0.00	400.00	2	15	
3	+/-1 mA	0	3500	0	P4	
4	+/-1 mA	0	0	0		
5	0-20 mA	0.0	120.0	1	V6	
6	0-20 mA	0.0	120.0	1	V7	
7	0-20 mA	0.00	400.00	2	16	
8	0-20 mA	-3500	3500	0	P5	
9	N/A					
10	N/A					
11	N/A					
12	N/A					
13	N/A					
14	N/A					
15	N/A					
16	N/A					
	<u>O</u> pen S <u>a</u> v	/e as <u>C</u>	lear <u>P</u> ri	nt	<u>S</u> end	<u>R</u> eceive

The available AI options are listed in the following table:

Option	Range	Description
AI type	0-1 mA	The AI module type. When connected to the device,
	±1 mA	shows the actual AI type read from the AI module.
	0-20 mA	
	4-20 mA	
	0-50 mA	
	±10 V	
Zero scale	0/4 mA	Defines the low engineering scale (in primary units) for
		the analog input corresponding to a lowest (zero) input current (0 or 4 mA, or 0 V)
Full scale	1/20/50 mA, 10V	Defines the high engineering scale (in primary units) for
i uli scalc	1/20/00 HIA, 10V	the analog input corresponding to a highest input current
		(1, 20 or 50 mA, or 10 V)
Dec. Places		
Dec. Places		The number of decimal digits in a fractional part of the
		scaled engineering value
Value label		An arbitrary name you can give the analog input value

NOTE:

Always save your Al setup to the site database in order to keep the labels you gives the analog inputs. They are not stored in your device.

Scaling Non-directional Analog Inputs

When programming scales for non-directional analog inputs with a 0-1mA, 0-20mA or 4-20mA current option, provide both zero and full engineering scales. An example is shown in the picture above for the 0-20 mA analog inputs. Each of the scales operates independently.

Scaling ±1mA Analog Inputs

When programming engineering scales for directional ± 1 mA analog inputs, you should provide only the engineering scale for the +1 mA input current. The engineering scale for the 0 mA input current is always equal to zero. The device does not allow you to access this setting. Whenever the direction of the input current is changed to negative, the device automatically uses your full engineering scale settings for +1 mA with a negative sign.

Scaling Analog Inputs for 0-2 mA and ±2 mA

The input scales for 0-1 mA and \pm 1 mA analog inputs are always programmed for 0 mA and \pm 1 mA regardless of the desired input range. If you want to use the entire input range of 2 mA or \pm 2 mA, set the analog input scales in your device as follows:

- **0-2 mA:** set the 1 mA scale to 1/2 of the required full scale output for uni-directional parameters, and set the 0 mA scale to the negative full scale and the 1 mA scale to zero for bi-directional parameters;
- **±2 mA:** set the 1 mA scale to 1/2 of the required full-scale output for both uni-directional and bi-directional parameters.

For example, to convert voltage readings from the analog transducer that transmits them in the range of 0 to 2 mA to the range 0 to 120V, set the full range for the +1 mA analog input to 60V; then the 2 mA reading is scaled to 120V.

Programming Analog Outputs

The PM180 supports up to three expansion Analog Input/Output (AI/AO) modules with a total of 12 analog outputs. I/O numbers are automatically assigned to the outputs in the order of connection when the device is powered up.

To configure the analog outputs in your device, select General Setup from the Meter Setup menu, and then click on the Analog Outputs tab. If you are programming your device online, Analog outputs that are not present in the device are designated as not available.

The available AO options are listed in the following table:

Option	Format/Range	Description
AO type	0-1mA	The AO module type. When connected to the device,
	±1mA	shows the actual AO type read from the AI/AO module.
	0-20mA	
	4-20mA	
Output		Selects the measured parameter to be transmitted
parameter		through the analog output channel (see Appendix A)
Zero scale		Defines the low engineering scale (in primary units) for
		the analog output corresponding to a lowest (zero) output
		current (0 or 4 mA)
Full scale		Defines the high engineering scale (in primary units) for
		the analog output corresponding to a highest output
		current (1 or 20 mA)

Relay Out	puts	Counters	E	nergy Pulses		Periodic T	imers	Time/Date
Basic Setup		Control/Alarm Se	etpoints	Analog Ou	itpu	its Analoj	g Inputs	Digital Input:
	No.	АО Туре	Outpu	t parameter		Zero Scale (0/4 mA)	Full Scale (1/20 mA)	
	1	+/-1 mA	V1/12 RT		•	0.0	828.0	
	2	+/-1 mA	11 RT		•	0.00	10.00	
	3	+/-1 mA	KW RT		•	0.000	17.000	
	4	+/-1 mA	PF RT		•	1.000	0.000	
	5	0-20 mA	V2/23 RT		•	0.0	828.0	
	6	0-20 mA	12 RT		•	0.00	10.00	
	7	0-20 mA	KW RT		•	-17.000	17.000	
	8	0-20 mA	PF RT		•	-0.000	0.000	
	9	N/A						
	10	N/A						
	11	N/A						
	12	N/A						
	13	N/A						
	14	N/A						
	15	N/A						
	16	N/A						
<u>O</u> pen		S <u>a</u> ve as	<u>C</u> lea	r .	<u>P</u> rir	nt <u>S</u>	end	<u>R</u> eceive

When you select an output parameter for the analog output channel, the default engineering scales are set automatically. They represent the maximum available scales for the parameter. If the parameter actually covers a lower range, you can change the scales to provide a better resolution on the analog output.

Scaling Non-directional Analog Outputs

When programming scales for non-directional analog outputs with a 0-1mA, 0-20mA or 4-20mA current option, you can change both zero and full engineering scales for any parameter. An example is shown in the picture above for the 0-20 mA analog outputs. The engineering scale need not be symmetrical.

Scaling Directional Power Factor

The engineering scale for the signed power factor emulates analog power factor meters. The power factor scale is -0 to +0 and is symmetrical with regard to ± 1.000 (-1.000 \equiv +1.000). Negative power factor is scaled as -1.000 minus measured value, and non-negative power factor is scaled as +1.000 minus measured value. To define the entire power factor range from -0 to +0, the default scales are specified as -0.000 to 0.000.

Scaling ±1mA Analog Outputs

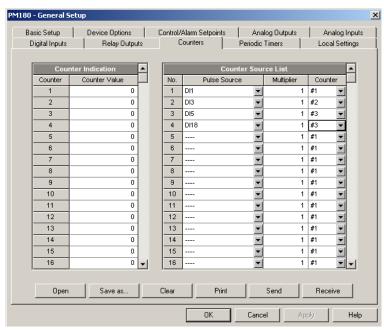
Programming engineering scales for directional ±1mA analog outputs depends on whether the output parameter represents unsigned (as volts and amps) or signed (as powers and power factors) values.

If the output value is unsigned, you can change both zero and full engineering scales.

If the parameter represents a signed (directional) value, you should provide only the engineering scale for the +1 mA output current. The engineering scale for the 0 mA output current is always equal to zero for all values except the signed power factor, for which it is set to 1.000 (see "Scaling Directional Power Factor" above). The device does not allow you access to this setting if the parameter is directional. Whenever the sign of the output parameter is changed to negative, the device automatically uses your full engineering scale settings for +1 mA with a negative sign.

Scaling Analog Outputs for 0-2 mA and ±2 mA

The output scales for 0-1 mA and \pm 1 mA analog outputs are programmed for 0 mA and \pm 1 mA regardless of the desired output current range. To use the entire output range of 2 mA or \pm 2 mA, set the analog output scales in your device as follows:


- **0-2 mA:** set the 1 mA scale to 1/2 of the required full scale output for uni-directional parameters, and set the 0 mA scale to the negative full scale and the 1 mA scale to zero for bi-directional parameters;
- ±2 mA: set the 1 mA scale to 1/2 of the required full-scale output for both uni-directional and bi-directional parameters.

For example, to provide the 0 to 2 mA output current range for volts measured by the device in the range of 0 to 120V, set the 1 mA scale to 60V; then the 120V reading is scaled to 2 mA.

Using Counters

The PM180 has 32 nine-digit signed counters that count different events. Each counter is independently linked to any digital input and count input pulses with a programmable scale factor. You can link a number of digital inputs to the same counter. Each counter can be incremented or decremented through the Control Setpoints in response to any internal or external event.

To configure the device counters, select General Setup from the Meter Setup menu, and then click on the Counters tab.

The available options are described in the following table:

Option	Range	Default	Description
Counter Setu	p		
Counter value	0 - 999,999,999	0	The value written to the counter at reset
Counter Sour	ce Setup		
Pulse source	None, DI1-DI48	None	Links a digital input to the counter
Multiplier	1 to10,000	1	The value added to the counter when a pulse is detected on the pulse source input
Counter	1-32	1	Defines the target counter for the pulse source input

Using Periodic Timers

The PM180 has 16 programmable timers that are used for periodic recording and triggering operations on a time basis through the Control Setpoints. When a pre-programmed timer interval is expired, the timer generates an internal event that can trigger any setpoints (see <u>Using Control</u> <u>Setpoints</u>). The programmable time interval can be from 1/2 cycle and up to 24 hours.

To configure the device timers, select General Setup from the Meter Setup menu, and then click on the Periodic Timers tab.

Basic Setup	Der	vice Options	Control	/Ala	rm Setpo	ints 🛛 🗛	nalog Outputs	8	Analog Inputs
Digital Inputs		Relay Output	s (Cour	nters	Period	dic Timers		Local Settings
			Peri	odi	c Timer	e			
	No.	Period	Units	oan	No.	Period	Units		
	1	0.000	Seconds	-	9	0.000	Seconds	-	
	2	0.000	Seconds	-	10	0.500	Cycles	-	
	3	0.000	Seconds	•	11	1.000	Cycles	-	
	4	0.000	Seconds	•	12	0.200	Seconds	•	
	5	0.000	Seconds	•	13	3.000	Seconds	•	
	6	0.000	Seconds	-	14	10.000	Seconds	•	
	7	0.000	Seconds	•	15	600.000	Seconds	•	
	8	0.000	Seconds	•	16	7200.000	Seconds	•	
Open	-1	Save as	Clear		1	Print	Send	1	Receive

The available options are described in the following table:

Option	Range	Default	Description
Period	0 = disabled	0	The timer period
	0.010 - 100,000.000 sec		
	0.500 - 100,000.000 cycles		
Units	Seconds,	Seconds	The time units
	Cycles		

Seven timers from Timer #10 through Timer #16 are factory preset and cannot be re-programmed. They are primarily intended for the use with the Power Quality and Fault recorders. Other timers can be programmed by the user.

To run a periodic timer, select the desired time unit and specify a non-zero time period.

To stop a timer, set the time period to zero.

Using Control Setpoints

The PM180 has an embedded logical controller that runs different actions in response to userdefined internal and external events. Unlike a PLC, the PM180 uses a simplified programming technique based on setpoints that allows the user to define a logical expression based on measured analog and digital values that produces a required action.

The PM180 provides 64 control setpoints with programmable operate and release delays. Each setpoints evaluates a logical expression with up to four arguments using OR/AND logic. Whenever an expression is evaluated as "true", the setpoints performs up to four concurrent actions that can send a command to the output relays, increment or decrement a counter, or trigger a recorder.

To program the setpoints, select General Setup from the Meter Setup menu, and then click on the Control/Alarm Setpoints tab.

		eral Setup					
	-	nputs Relay Output			1	ic Timers	Local Settings
Bas	ic Se	tup Device Options	Control/Alarm 9	setpoint	s A	nalog Outputs	Analog Inputs
Set	tpoint	No. 1					
			Setpoint Tr	iggers			
OR/A	٩ND	Input Group	Trigger Parame	ter	Relation	Operate limit	Release limit
OR	•	RMS (1/2 cycle)	V1	•	<= 💌	110.0	115.0
OR	-	RMS (1/2 cycle)	V2	-	<= 💌	110.0	115.0
OR	•	RMS (1/2 cycle)	V3	•	<= 💌	110.0	115.0
OR	•	DIGITAL INPUTS	DI22	•	ON 💌		
OR	•						
OR	•						
OR	•						
OR	-						
		Action	s			Delay	/s, s
No.		Action	Target	Para	neter 🤇	perate delay	0.000
1	OPE	RATE RELAY	• #1 •	• #1 •		telease delay	0.000
2	E∨E	ENT LOG	ANY 🔽				
3	SOELOG			·			
4							
	Op	en Save as	Clear Clear /	41	Print	Send	Receive
				ОК	Car	ncel Appl	y Help

The available setpoints options are described in the following table:

Option	Format/Range	Description
Setpoints Triggers	5	
OR/AND	OR, AND	The logical operator for the trigger
Input group		The trigger parameter group (see Appendix C)
Trigger parameter		The trigger parameter that is used as an argument in the logical expression (see Appendix C)
Relation	<=, >=, =, <>, Delta, Delta+, Delta-, rDelta, rDelta+, rDelta-	The relational operator used in the conditional expression for the trigger
Operate limit		The threshold (in primary units) at which the conditional expression would be evaluated to true. Not applicable for digital triggers.
Release limit		The threshold (in primary units) at which the conditional expression would be evaluated to false. Defines the hysteresis for analog triggers. Not applicable for digital triggers.
Setpoints Actions		
Action		The action performed when the setpoints expression is evaluated to true (see Appendix B)
Target		The optional action target
Parameter		The optional action argument (reserved)
Delays		
Operate delay	0-10,000.000 sec	The time delay before operation when the operate conditions are fulfilled
Release delay	0-10,000.000 sec	The time delay before release when the release conditions are fulfilled

The logical controller provides very fast response to events. The scan time for all setpoints is 1/2 cycle time (8 ms at 60Hz and 10 ms at 50 Hz).

Setpoints #1 is factory preset to provide standard periodic data logs on a 15-minute time basis. It is linked to the device clock and runs Data logs #1 and #2 at 15-minute boundaries of an hour.

Using Logical Expressions

Logical operators OR/AND are treated in a simplified manner. They have no specific priority or precedence rules.

Any trigger condition bound to the logical expression by the OR operator and evaluated as "true" overrides any preceding condition evaluated as "false". Similarly, any trigger condition evaluated as "false" and bound by the AND operator overrides any condition evaluated before it as "true".

To avoid confusion, it is recommended not to alternate different logical operators in one expression. Instead, bring all conditions that use the same logical operator together at one side of the expression, and the others - at the opposite side.

To explicitly override all other conditions with the critical trigger, put it at the end of the expression using the OR operator if you want the setpoints to be operated anyway when the trigger condition is asserted, and with the AND operator, if the setpoints should not be operated while the critical trigger is not asserted.

Using Numeric Triggers

For numeric (analog) triggers, a setpoints allows you to specify two thresholds for each trigger to provide hysteresis (dead band) for setpoints operations. The Operate Limit defines the operating threshold, and the second Release Limit defines the release threshold for the trigger. The trigger thresholds are always specified in primary units.

If you use relational operators as "<=" (under or equal) or ">=" (over or equal), always specify a correct Release Limit for the trigger. If you do not want to use hysteresis, set the Release Limit to the same as the Operate Limit.

With the "Delta" operator, the setpoints is operated when the absolute value of the difference between the last reported value and the current value exceeds the specified threshold

Using Binary Triggers

Binary (digital) triggers, as digital inputs, relays, or internal static and pulsed events, are tested for ON (closed/set) or OFF (open/cleared) status. Min/Max log parameters can be tested for a NEW event that is asserted when a new minimum or maximum value is recorded for the parameter since the last time it was checked.

The binary events are divided into two types: static events and pulsed events. Static events are level-sensitive events. A static event is asserted all the time while the corresponding condition exists. Examples are digital inputs, relays and internal static events generated by the device diagnostics, metering procedures, and Power Quality and Fault recorders.

Pulsed events are edge-sensitive events with auto-reset. A pulsed event is generated for a trigger only once when a positive transition edge is detected on the trigger input. The examples of pulsed events are pulse inputs (transition pulses on the digital inputs), internal pulsed events (energy pulses and time interval pulses), and events generated by the interval timers. The logical controller automatically clears pulsed events at the end of each scan, so that triggers that used pulsed events are prevented from being triggered by the same event once again.

Using Event Flags and Virtual Relays

The PM180 has 16 common binary flags, called event flags, which can be individually set, cleared and tested through setpoints or remotely.

Event flags can be used in different applications, for example, to transfer events between setpoints in order to expand a logical expression or a list of actions that have to be done for a specific event, or to remotely trigger setpoints actions from the SCADA system or from a PLC.

In the same way, any of the 32 device relays that is not actually present in your device (it is called a virtual relay) can be used to transfer events from one setpoints to others, or to indicate events to the setpoints from the external system.

Using Interval Timers

The PM180 has 16 interval timers that are commonly used for periodic recording of interval data at the time of the fault or in the presence of other events detected by setpoints. Some of the timers are factory preset for use with the Power Quality and Fault recorders, and others can be programmed to generate periodic events at user-defined intervals (see <u>Using Periodic Timers</u>).

Interval timers are not synchronized with the clock. When you run a timer, it generates a pulsed timer event that can trigger a setpoints if you have put the timer into a list of the setpoints triggers. When the setpoints event is asserted, the timer is restarted, and then generates the next timer event when the timer interval expires.

If you want to record interval data at predefined intervals without linking to other events, just select a timer as a setpoints trigger and specify in the setpoints actions list a data log file you want to use for recording. If you want the periodic data to be recorded in presence of a specific event, select triggers that identify your event, and then add the timer at the end of the trigger list using the AND operator.

Using Time Triggers

If you want the setpoints actions to be synchronized with the clock, for example, to provide synchronous recording interval data each 15 minutes or each hour, or to output time pulses through relay contacts, use the time triggers that generate static events synchronized to the device clock.

You can exercise the default setting for Setpoints #1 in your device as an example of using time triggers. The setpoints is pre-programmed for data profiling at 15-minute intervals using data logs #1 and #2.

Using the Voltage Disturbance Trigger

The voltage disturbance trigger (found under the VOLT DISTURB name in the SPECIAL INPUTS trigger group) detects all types of the voltage waveshape faults on any phase caused by fast transient voltages. You can use it to record disturbances if you want to do this differently from the way the Power Quality recorder does it.

The operate threshold for the voltage disturbance trigger defines the maximum allowable voltage deviation from a steady-state level above which the device declares a waveshape fault. It is specified as a percent of the nominal voltage. Using PAS you may select volts units or % of nominal voltage from the "Preferences" tab in the "Tools/Options dialog (see <u>Voltage Disturbance Units</u> in Chapter 13).

The trigger does not respond to slow voltage variations whenever the voltage rise above or drop below the specified threshold takes longer than 1 cycle time.

Delaying Setpoints Operations

Two optional delays can be added to each setpoints to extend monitoring setpoints triggers for a longer time before making a decision on whether the expected event occurred or not. When a delay is specified, the logical controller changes the setpoints status only if all conditions are asserted for a period at least as long as the delay time.

Although a delay can be specified with a 1-ms resolution, the actual value is aligned at a lower 1/2-cycle time boundary.

Note that you cannot use delays with pulsed events since they are cleared immediately and do not longer exist on the next setpoints scan.

Using Setpoints Events and Actions

When a setpoints status changes, i.e., a setpoints event is either asserted or de-asserted, the following happens in your device:

- 1. The new setpoints status is logged to the setpoints status register that can be monitored from the SCADA system or from a programmable controller in order to give an indication on the expected event.
- The operated setpoints status is latched to the setpoints alarm latch register, which is remotely accessible. The register holds the last setpoints alarm status until it is explicitly cleared.
- 3. Up to four programmable actions can be performed in sequence on setpoints status transition when a setpoints event is asserted.

Generally, setpoints actions are performed independently for each setpoints and can be repeated a number of times for the same target. The exceptions are relay operations, data logging and waveform logging that are shared between all setpoints using an OR scheme for each separate target.

A relay output is operated when one of the setpoints linked to the relay is activated and stays in the operated state until all of these setpoints are released (except for latched relays that require a separate release command to be deactivated).

Data logging and waveform logging directed to the same file are done once for the first setpoints among those that specify the same action, guaranteeing that there will not be repeated records related to the same time.

Recording Setpoints Events

Time-tagged setpoints events can be recorded both to the Event log, and to the Sequence-of-Events log files if you put corresponding actions into the setpoints action list.

If you link a setpoints to the Sequence-of-Events recorder, all setpoints transition events are recorded to the Sequence-of-Events log by default. If you select to record setpoints operations into the Event log, define in the action target box which transition events you want to be recorded: when

the setpoints is operated, when it is released, or both events. The Event recorder puts into a log file a separate record for each active trigger caused a setpoints status transition, and a separate record for each action done on the setpoints activation (except for logging actions that are not recorded to the Event log).

If you run a number of recorders from the same setpoints action list, it is recommended that you put the Event log action before others in order to allow other recorders to use the event sequence number given to the event by the Event recorder.

Cross Triggering Setpoints

When a setpoints is operated, the device sends a broadcast UDP message across the network using one of the sixteen triggering channels. All devices that have a setpoints programmed to respond to this trigger act in response. The cross triggering delay is normally less than one cycle time.

To send a cross triggering message, put an "EXT TRIGGER" action into the setpoints actions list and select one of the sixteen triggering channels as a target. In all devices, which you want to respond to this message, select an "EXT TRIGGER" group in the setpoints triggers list and specify the channel through which the device would receive messages.

Configuring the PMU IEC 61850 SV publisher

The PMU SV publisher options and the sampled values dataset can be configured via PAS IEC 61850 dialogs as shown in the following pictures.

	61850 IED Properties	IEC 61850		IEC 61850 Reports		
GOOSE Pu	blisher Setup GOOSE	Subscriber Setup	SV Publisher Setup	Report Deadban		
		Sampled Values (S				
	SV Control Block Name	MsvCBPub1				
	SV Control Block Reference		MS\$MsvCBPub1			
	SV Transmission Enabled	NO		•		
	SVID		tionName-IDCode			
	Dataset Reference	PMU/LLN0\$0	DSetSV1			
	Configuration Revision	1				
	Sample Rate, samples/s	10	10			
	Optional Fields	0111000		->		
	Sample Mode	Samples per	r second			
	Destination MAC Address	01:0C:CD:04	k:01:FF			
	VLAN Priority	4	4			
	VLAN ID [hex]	000				
	APPID [hex]	4000				
	Number of ASDU in one APDU	1				
	Open Save as De	fault Print	Send Receive	Update CID File		

Figure 6-1 SV Publisher configuration tab

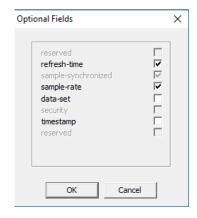


Figure 6-2 Optional fields configuration

	ublisher Setup 61850 IED Properties	GOOSE Subsc	iber Setup IEC 61850		/ Publisher Setup	IEC 6	Report Deadb 1850 Reports	band
			Dataset Iter	ns: 36	Selected Items: 36	6 Check	/Uncheck All	•
		Delet	table/Changeab	le Datase	ts			
Datase	t Reference	PMU/LLN0\$DSetS	V1					•
			Dataset Memb	ers				^
No.		Mem	ber Reference			1	ncluded	
1	PMU/MMXU1\$MX\$PH	V\$phsA\$cVal\$mag					v	
2	PMU/MMXU1\$MX\$PH	V\$phsA\$cVal\$ang					✓	
3	PMU/MMXU1\$MX\$P	V\$phsA\$q					v	
4	PMU/MMXU1\$MX\$PH	V\$phsA\$t					✓	
5	PMU/MMXU1\$MX\$P	V\$phsB\$cVal\$mag					✓	
6	PMU/MMXU1\$MX\$P	V\$phsB\$cVal\$ang					✓	
7	PMU/MMXU1\$MX\$P	V\$phsB\$q					✓	
8	PMU/MMXU1\$MX\$PH						•	
9	PMU/MMXU1\$MX\$P	V\$phsC\$cVal\$mag					•	
10	PMU/MMXU1\$MX\$P						•	
11	PMU/MMXU1\$MX\$P	V\$phsC\$q					•	
12	PMU/MMXU1\$MX\$P	V\$phsC\$t					•	
13	13 PMU/MMXU1\$MX\$A\$phsA\$cVal\$mag							
14	PMU/MMXU1\$MX\$A	\$phsA\$cVal\$ang					✓	v .

Figure 6-3 SV Dataset configuration tab

Configuring IEEE C37.118.2

Use PAS configuration software provided with your device to configure IEEE C37.118.2 options. See the PM180 Operation Manual for more information on installation and operating PAS on your computer.

The PM180 firmware version must be at least V31.XX.31

To configure the IEEE C37.118.2 options:

- 1. Ensure that the selected connection protocol to communicate with your device is set to Modbus RTU or Modbus ASCII.
- 2. Select Communications Setup from the Meter Setup menu and then click on the IEEE C37.118.2 Setup tab.

PM180 - Com	nmunication Setup	×						
Network S TCP Notifica		t Setup ExpertPower Client Setup E C37.118.2 Setup Serial Ports Setup						
	IEEE C37.118.2 Setup							
	Station Name	station_name						
	Data Stream ID Number	7000						
	Phasor Coordinate Format	Rectangular (Re/Im)						
	Phasor/Frequency Data Format	32-bit IEEE Floating Point						
	Data Rate, frames/s	10 💌						
	Configuration Change Count	1						
	Client-server UDP/TCP Trans	nsmission						
	Local UDP Port	4713						
	Local TCP Port	4712						
	Stop UDP Streams	NO						
	Spontaneous UDP Transm	nission						
	Transmission Enabled	Disabled						
	Destination UDP Port	4713						
	Destination IP Address (unicast/multicast)	192 . 168 . 0 . 255						
Open	Save as Default Prin	t Send Receive						
	ОК	Cancel Apply Help						

- 3. Select desired options.
- 4. Click Save as... to store your setup in the device site database, and click Send to send the setup to the device.

See the following table for available options.

Parameter	Options	Default	Description
IEEE C37.118.2 Setup			
Station Name	Up to 16 ASCII characters	station_name	Identifies the station
Data Stream ID Number	1-65534	7000	Identifies the data stream
Phasor Coordinate Format	Rectangular = phasor real and imaginary, Polar = magnitude and angle	Rectangular	Selects the representation format for phasor vector
Phasor/Frequency Data Format	16-bit integer, 32-bit IEEE floating point	32-bit IEEE floating point	Selects the data format for phasor and frequency data
Data Rate, frames/s	1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60	10	Rate of data transmission.
Configuration Change Count	0-65535	0	

Parameter	Options	Default	Description
Client-server UDP/TC	P Transmission		
Local UDP Port	1024-49151	4713	Local UDP port number for commanded client-server UDP operation.
Local TCP Port	1024-49151	4712	Local TCP port number for client-server TCP operation.
Stop UDP Streams	NO, YES	NO	Stops all active commanded UDP streams. Can be used to stop uncontrollable UDP streams in case of an abnormal client disconnection.
		D:	
Transmission Enabled	Disabled, Enabled	Disabled	Enables spontaneous data transmission.
Destination UDP Port	1024-49151	4713	Destination port number for spontaneous data transmission.
Destination IP Address (unicast/multicast)		192.168.0.25 5	Destination IP address for spontaneous data transmission. Can be unicast, multicast or broadcast address.

NOTES:

- 1. Configure the Synchrophasor data frame properties and local port settings before turning on the data transmission. Changing either invalidates all active data streams and stops data transmission in progress.
- Changing the local TCP port causes closing all active connections and restarting the network services. If you make changes via an Internet connection, wait a couple of seconds until the network is ready for operation before sending a new connection request.
- The selected data rate is automatically rounded up to the nearest sub-multiple of the nominal frequency. In case of using both IEEE C37.118.2 and IEC 61850 Synchrophasor data communications, the new data rate is applied to both protocols.
- 4. Changing the Synchrophasor data frame properties advances the configuration change count. You can set it to any desired number by explicit writing the count value.

Chapter 7 Configuring Recorders

The PM180 is provided with a 256MB onboard non-volatile memory for data, event and waveform recording.

Before using recorders, the device memory must be partitioned between log files. The device memory is fully configurable; you can define how much memory to allocate for each log file. If you want to change the factory settings, follow the guidelines in the section below.

Configuring Device Memory

The PM180 memory can be partitioned for a total of 28 log files:

- Event log
- 16 Data logs
- 8 Waveform logs
- SOE log
- IEEE 1159 or EN 50160 or GOST 32144 PQ log
- Fault log

To view the device memory settings, select Memory/Log from the Meter Setup menu, and then click on the Log Memory tab.

	otal memory: 251	558240 bytes	Free me	emory: 18247:	-					
		_	-		Files				-	
۹o.	File		Туре	Size, Bytes	Sections/ Channels	Max. Records	Max. Events	Record Size	Para- meters	Logged Records
1	Event Log	Wrap-around	ł	40000		2000	2000	20		19
2	Data Log 1	Wrap-around	ł	3072000		38400	38400	80	16	1264
3	Data Log 2	Wrap-around	k	3072000		38400	38400	80	16	1264
4	Data Log 3	Free								
5	Data Log 4	Free								
6	Data Log 5	Free								
7	Data Log 6	Free								
8	Data Log 7	Free								
9	Data Log 8	Free								
10	Data Log 9	EN50160 Cor	npliance Statistics	474240	12	260	260	152	34	2
11	Data Log 10	EN50160 Har	monics Survey	174720	3	260	260	224	52	2
12	Data Log 11	Free								
13	Data Log 12	Free								
14	Data Log 13	Wrap-around	ł	560000		10000	10000	56	10	0
	Joana 209 10	i nap a cana	•				10000			
	Open	Save as	Clear	Print	Send	Receive	1 .	Configure File	1	Recorder

The following table shows available file options.

Option	Format/Range	Description
Туре	Wrap around, Non-wrap TOU Monthly Profile TOU Daily Profile	Defines the file behavior when it is filled up. Wrap around: recording continues over the oldest records. Non-wrap: recording is stopped until the file is cleared. TOU Monthly Profile: monthly TOU profile data log (only for data log #15). Wrap around by default. TOU Daily Profile: daily TOU profile data log (only for data log #16). Wrap around by default.
Size		Shows the size of the memory allocated to the file. It is set automatically depending on the size of a file record and the number of records in the file.
Sections/Channels	0-32	Defines the numbers of sections in a multi-section TOU profile data log file or the number of recording channels in a waveform log file
Num. of Records	0-65535	Allocates the file memory for a predefined number of records
Record size		Shows the size of the file record for a single channel or section. It is set automatically depending on the file and on the number of parameters in the data record

Option	Format/Range	Description
Parameters		Defines the number of parameters in a single data record
		for data log files.

Memory is allocated for each file statically and does not change unless you re-organize the files. The PM180 automatically performs de-fragmentation of the memory each time the file allocation changes. This helps keep all free memory in one continuous block, and thus prevents possible leakage of memory caused by fragmentation.

In the EN 50160 version, data log files #9 and #10 are automatically configured for recording EN 51060 compliance statistics and harmonics survey data. You may not change the record structure, but can change the amount of memory allocated for each file.

Data log files #15 and #16 may be configured to record TOU monthly profile and TOU daily profile data on a daily or monthly basis.

To change the file properties or to create a new file:

- 1. Double click on the file partition you want to change, or highlight the file row, and then click on the "Configure File" button.
- To change the file properties, select desired parameters, and then click OK. For your reference, the record size and the number of records available for the file are reported in the dialog box.
- 3. To delete a file partition, click on Delete, and then click OK.
- 4. Send your new setup to the device.

The following table shows how to calculate a file size for different files.

File	Record Size, Bytes	File Size, Bytes
Event Log	20	Record Size × Number of Records
Data Log	12 + 4 \times Number of Parameters	Record Size × Number of Records
EN50160 Compliance Statistics (Data log #9)	152 (per channel) × 12	Record size × Number of records
EN50160 Harmonics Survey (Data log #10)	224 (per channel) $ imes$ 3	Record size × Number of records
TOU Profile Log	12 + 4 × Number of	Record Size × Number of TOU
(Data log #15-#16)	Season Tariffs	Registers × Number of Records x 2
Waveform Log	1072	Record Size × Number of Channels × Number of Series × Number of Records per Series
SOE Log	16	Record Size × Number of Records
PQ Log	32	Record Size × Number of Records
Fault Log	44	Record Size × Number of Records

For more information on configuring specific files, see following sections.

The device memory is pre-configured for regular data trending and fault recording applications as shown in the following table.

No.	File	Туре	Size, Bytes	Sections/Ch	Max. of	Max. of	Description
				annel	Records	Events	

No.	File	Туре	Size, Bytes	Sections/Ch		Max. of	Description
				annel	Records	Events	
1	Event log	Wrap around	40000		2000	2000	
2	Data log #1	Wrap around	3072000		38400	38400	Configured for continuous data recording
3	Data log #2	Wrap around	3072000		38400	38400	Configured for continuous data recording
10	Data log #9	Wrap around	474240	12	260	260	Configured for EN50160 compliance statistics
11	Data log #10	Wrap around	174720	3	260	260	Configured for EN50160 harmonics survey
12	Data log #11	Warp around	51287040	14	8640	8640	IEC 61000-4-30 PQ profile ¹
14	Data log #13 (fault data trend)	Wrap around	560000		10000	10000	Used by the Fault recorder
15	Data log #14 (PQ data trend)	Wrap around	520000		10000	10000	Used by the PQ recorder
24	Waveform log #7	Wrap around	42880000	10	4000	1000	Used by the PQ and Fault recorders
25	Waveform log #8	Wrap around	17152000	8	2000	500	Used by the PQ recorder
26	SOE log	Wrap around			10000	10000	
27	PQ log	Wrap around	640000		20000	20000	
28	Fault log	Wrap around	440000		10000	10000	

Configuring the Event Recorder

To change the Event log file size:

- 1. Select Memory/Log from the Meter Setup menu, and then click on the Log Memory tab.
- 2. Double click on the Event log file partition with the left mouse button.

 $^{\scriptscriptstyle 1}$ New predefined data log #11 – 10mn aggregation time interval PQ profile from firmware version V31.XX.30

igure File Partition		
File: Event Log Free Memory: 182473280	Record Size: 20 Number of Records 65 Available:	;535
File Attributes		
Number of Records:	2000	
Number of Records: Number of Sections:	2000 ×	Delete
		Delete

- 3. Select a file type.
- 4. Select the maximum number of records you want to be recorded in the file.
- 5. Click OK, and then send your new setup to the device or save to the device database.

By default, the Event recorder stores all events related to configuration changes, reset, and device diagnostics. In addition, it records events related to setpoints operations. Each setpoints should be individually enabled for recording to the Event log.

To log setpoints operations, add the "Event log" action to the setpoints actions list. Put the event log action at the beginning of the list to allow other recorders to use the sequence number assigned to the event for cross-linking between records logged to different files. When a setpoints event happens, the Event recorder logs all setpoints conditions that caused the event and all setpoints actions performed in response to the event.

Configuring the Sequence-of-Events Recorder

The Sequence-of-Events (SOE) recorder can log four types of events:

- Digital input events
- Relay output events
- Fault events
- Setpoints events

Each state transition on a source point (open/closed, start/end) is recorded as a separate event. Fault events are recorded to the file by default. Others should be individually enabled to be recorded to the SOE log.

To change the SOE log file size:

- 1. Select Memory/Log from the Meter Setup menu, and then click on the Log Memory tab.
- 2. Double click on the SOE log file partition with the left mouse button.

igure File Partition		
File: SOE Log Free Memory: 182473280	Number of Decoude	6
File Attributes		7
Number of Records:	10000 🕂	
Number of Sections:	0 🚊	Delete
Number of Parameters:	NONE	OK
File Type: Wrap-around	-	Cancel

- 3. Select a file type.
- 4. Select the maximum number of records you want to be recorded in the file.
- 5. Click OK, and then send your new setup to the device or save to the device database.

Linking Digital Inputs to the SOE Log

To link a digital input to the SOE log, check the "SOE Log" box when configuring the digital input (see <u>Configuring Digital Inputs</u>). If you linked a digital input to the Fault recorder, it is automatically connected to the SOE log even if you leaved the "SOE Log" box unchecked.

Linking Relay Outputs to the SOE Log

To link a relay output to the SOE log, check the "SOE Log" box when configuring the relay output (see <u>Programming Relay Outputs</u>).

Linking Setpoints to the SOE Log

To link a setpoints to the SOE log, add the "SOE Log" action to the setpoints actions list when configuring the setpoints (see <u>Using Control Setpoints</u>).

Adding Point and Status Labels to the SOE Log

When displaying the SOE log report, PAS shows you default designations of the event source points and their status (open/closed or start/end). You can specify your own IDs and status labels for each event point and give the point status an appropriate description, for example, define the location of the breaker or protection relay.

To define labels for your SOE event points:

- 1. Select Labels from the Meter Setup menu, and then click on the appropriate tab.
- 2. Type in the labels and descriptions you want to give the event source points and their status.
- 3. Select appropriate label colors.
- 4. Click on "Save as" to save your settings to the site database.
- 5. Send your setup to the device so you can recall your labels when connecting to the device from another PC.

An ID or status label can be up to 32 characters long, and a status description can have up to 96 characters. The text boxes have a scroll option to accommodate more characters than can be viewed in the box. If your label or description is too long to fit in a box, the text scrolls to allow you to enter long strings.

Point Closed Status				Open Status			
No.	ID	Status	Description	Color	Status	Description	Color
DI1	City Sub	ALARM	TOC LOCKOUT Transformer #1		NORMAL	TOC RESET Transformer #1	
DI2	City Sub	OPEN	Feeder # 8 - Breaker Trip		CLOSE	Feeder # 8 - Breaker RESET	
DI3	CLAY ST	TRIP	Under Frequency TRIP		RESET	Frequency RESET	
DI4	City Sub	ON	MANUAL TRIP - T14 BREAKER		OFF	MANUAL RESET - T14 BREAKER	
DI5	CLAY ST	TRIP	36M OVER CURRENT DELAY TRIP		RESET	36M OVER CURRENT DELAY RESET	
DI6	TRANSM	ALARM	TRANSFORMR # 2 OVER TEMP	-	NORMAL	TRANSFORMER #2 NORMAL	
DI7	TRANSM	CLOSED	TOC RESET - FEEDER LLC-1		OPEN	TOC LOCKOUT - FEEDER LLC-1	
DI8	LOWELL	ALARM	CONDENSOR PUMP OVERLOAD		NORMAL	CONDENSOR PUMP NORMAL	
DI9	LOWELL	ALARM	OIL TEMP ALARM - XFMER #2		NORMAL	OIL TEMP NORMAL - XFMER #2	
DI10	NEVVARK	TRIP	BREAKER 33M - EM INST TRIP		RESET	BREAKER 33M - EM INST RESET	
DI11	NEVVARK	ALARM	Under Voltage Alarm <108 VAC		NORMAL	Voltage Return to Normal >120VAC	
DI12	DELMAR	OPEN	BREAKER 37M TRIP		CLOSED	BRAEKER 37M RESET	
DI13	DELMAR	NORMAL	TRANSFORMER # 3 RESET		ALARM	TRANSFORMER # 3 TRIP	
DI14	ORION	CLOSED	BREAKER 36H CLOSED		OPEN	BREAKER 36H OPEN	
DI15	VERNON	TRIP	TRANSFORMER #1 - TRIP		RESET	TRANSFORMER #1 - RESET	
DI16	VERNON	TRIP	TRANSFORMER # 2 - TRIP		RESET	TRANSFORMER # 2 - RESET	
	_	Open	Save as Clear	Pri		Send Receive	

Configuring the Data Recorder

The Data recorder is programmable to record up to 16 data parameters per record in each of 16 data log files. The list of parameters to be recorded to a data log is configured individually for each file.

Conventional Data Log Files

	EN 50160:2010 Har Log Memory	monics Setup Fault	t Recorder	Wa)160:2010 PQ	aveform Reco	order		grammable Mi	-
	Log Memory	Data Recorder	EN 50	160:2010 PQ	Recorder		EN 50160):2010 Advan	ced Setup
т	otal memory: 25165	i8240 hvtes Free m	emory: 17711	5240 hytes					
_									
	1			j Files	I				
lo.	File	Туре	Size, Bytes	Sections/ Channels	Max. Records	Max. Events	Record Size	Para- meters	Logged Records
1	Event Log	Wrap-around	40000	channels	2000	2000	20	metera	2000
2	Data Log 1	Wrap-around	3072000		38400	38400	80	16	38400
3	Data Log 2	Wrap-around	3072000		38400	38400	80	16	5552
4	Data Log 3	Wrap-around	8000		100	100	80	16	0
5	Data Log 4	Free							
6	Data Log 5	Free							
7	Data Log 6	Free							
8	Data Log 7	Free							
9	Data Log 8	Free							
10	Data Log 9	EN 50160:2010 Compliance	457600	11	260	260	160	36	0
11	Data Log 10	EN 50160:2010 Harmonics	1272960	12	260	260	408	98	0
12	Data Log 11	Free							
13	Data Log 12	Free							
14	Data Log 13	Wrap-around	520000		10000	10000	52	9	0
15	Data Log 14	Wrap-around	520000		10000	10000	52	9	0
16	Data Log 15	Free							
	Open	Save as Clear	Print	Send	Receive		Configure File	e Setup	Recorder

To create a new data log file or re-configure an existing file:

- 1. Select Memory/Log from the Meter Setup menu, and then click on the Log Memory tab.
- 2. Double click on the file partition with the left mouse button.
- 3. Select a file type.
- 4. Select the number of parameters to be recorded in the file records.
- 5. Select the maximum number of records to be recorded in the file.
- 6. Click OK, and then send your new setup to the device, or save to the device database.

nfigure File Partition		2
File: Data Log 1 Free Memory: 182473280	Record Size: 80 Number of Records 65 Available:	535
File Attributes	38400	
Number of Records: Number of Sections:		Delete
Number of Parameters:	16 💌	ОК
File Type: Wrap-around	•	Cancel

7. Highlight the data log file row with the left mouse button, and then click on the "Setup Recorder" button, or click on the "Data Recorder" tab and select the log number corresponding to your file.

PM180_USB -	Log S	etup									×
Log Memory	Data	Recorder	Waveform Rec	order	EN50160 PQ Record	ler	EN5	0160 Advanced Setup	EN	50160 Harmonics Setup Fault	Recorder
	Log I		Name:								
					Data Log	Pa	irame	ters			
	No.		Group		Parameter		No.	Group		Parameter	
	1	RT PHAS				•	9	RT TOTAL	•		
	2	RT PHAS				•		RT TOTAL	•	PF 💌	
	3	RT PHAS				•		RT PHASE	▼	V1 THD	
	4	RT PHAS		-		-		RT PHASE	•		
	5	RT PHAS				-		RT PHASE	•		
	6	RT PHAS				•		RT PHASE	•	II THD	
	7	RT TOTA			/	-		RT PHASE	•		
	8	RT TOTA		kv:	ar j	•	16	RT PHASE	•	I3 THD	
		Open	Save as.		Clear C	lea	r All	Print	Se	end Receive	
								ОК		Cancel Apply	Help

 Configure the list of parameters to be recorded in the data log file. You are not allowed to select more parameters than you defined when configuring your file. Refer to Appendix C for a list of available parameters.

For your convenience, PAS follows your selection and helps you to configure a series of the neighboring parameters: when you open the "Group" box for the next parameter, PAS highlights the same group as in your previous selection; if you select this group again, PAS automatically updates the "Parameter" box with the following parameter in the group.

- 9. Add the name for your data log file in the "Name" box. It will appear in the data log reports.
- 10. Save your new setup to the device database, and send it to the device.

Factory Preset Periodic Data Logs

Data logs #1 and #2 are factory preset for periodic recording of the standard power quantities as shown in the following table.

No.	Parameter	No.	Parameter
Data	Log #1		
1	RT (1-cycle) V1	9	RT (1-cycle) Total kVA
2	RT (1-cycle) V2	10	RT (1-cycle) Total PF
3	RT (1-cycle) V3	11	RT (1-cycle) V1 THD
4	RT (1-cycle) I1	12	RT (1-cycle) V2 THD
5	RT (1-cycle) I2	13	RT (1-cycle) V3 THD
6	RT (1-cycle) I3	14	RT (1-cycle) I1 THD
7	RT (1-cycle) Total kW	15	RT (1-cycle) I2 THD
8	RT (1-cycle) Total kvar	16	RT (1-cycle) I3 THD
Data	Log #2		
1	kW Import Sliding Demand	9	I1 Demand
2	kvar Import Sliding Demand	10	I2 Demand
3	KVA Sliding Demand	11	I3 Demand
4	kWh Import	12	V1 Demand
5	kWh Export	13	V2 Demand
6	kvarh Import	14	V3 Demand
7	kvarh Export	15	RT (1-cycle) I4
8	kVAh	16	RT (1-cycle) V4

Setpoints #1 is preset at the factory to trigger Data logs #1 and #2 in 15 min intervals.

IEC 61000-4-30 Profile Data log

Data log #11 is factory preset for 10minutes average, minimum and maximum basic parameters and power quality parameters measurements recorder, a total of 1345 parameters per records. It consists of a sectional log file divided in 14 portions with approximately 100 parameters for each section; table below shows the list of parameters for each section.

Section	ltem No.	Parameter Name	No. of Params	Types of Params			Comments	
0		IEC 61000-4-30 - RMS-Power Profile						
	1-3	RMS voltage A	3	MEAN	MAX	MIN	In RMS Volts	
	4-6	RMS voltage B	3	MEAN	MAX	MIN	In RMS Volts	
	7-9	RMS voltage C	3	MEAN	MAX	MIN	In RMS Volts	
	10-12	RMS voltage N	3	MEAN	MAX	MIN	In RMS Volts	
	13-15	RMS voltage AB	3	MEAN	MAX	MIN	In RMS Volts	
	16-18	RMS voltage BC	3	MEAN	MAX	MIN	In RMS Volts	
	19-21	RMS voltage CA	3	MEAN	MAX	MIN	In RMS Volts	
	22-24	Frequency	3	MEAN	MAX	MIN	In Hertz	
	25-27	RMS Current A	3	MEAN	MAX	MIN	In RMS Amps	
	28-30	RMS Current B	3	MEAN	MAX	MIN	In RMS Amps	
	31-33	RMS Current C	3	MEAN	MAX	MIN	In RMS Amps	
	34-36	RMS Current N	3	MEAN	MAX	MIN	In RMS Amps	
	37-39	Active Power A	3	MEAN	MAX	MIN	•	
	40-42	Active Power B	3	MEAN	MAX	MIN		
	43-45	Active Power C	3	MEAN	MAX	MIN		
	46-48	Active Power Total	3	MEAN	MAX			
	49-51	Reactive Power A	3	MEAN	MAX		-	
	52-54	Reactive Power B	3	MEAN	MAX		Net Power (+	
	55-57	Reactive Power C	3	MEAN	MAX	MIN	for import and - for export)	
	58-60	Reactive Power Total	3	MEAN	MAX			
	61-63	Apparent Power A	3	MEAN	MAX	MIN	_	
	64-66	Apparent Power B	3	MEAN	MAX	MIN	-	
	67-69	Apparent Power C	3	MEAN	MAX	MIN	-	
	70-72	Apparent Power Total	3	MEAN	MAX	MIN	-	
	73-75	True Power Factor A	3	MEAN	MAX	MIN		
	76-78	True Power Factor B	3	MEAN	MAX	MIN	Calculated	
	79-81	True Power Factor C	3	MEAN	MAX	MIN	from Net	
	82-84	Displacement Power Factor A	3	MEAN	MAX			
	85-87	Displacement Power Factor B	3	MEAN	MAX		Calculated	
	88-90	Displacement Power Factor C	3	MEAN	MAX		from Net	
	91	Watthours A	1		WI/N/			
	92	Watthours B	1				-	
	93	Watthours C	1				-	
	94	Watthours Total	1				-	
	95	Varhours A	1				-	
	96	Varhours B	1				Net Power (+	
	97	Varhours C	1				for import and -	
	98	Varhours Total	1				for export)	
	99	VA hours A	1				-	
	100	VA hours B	1	1			1	
	100	VA hours C	1	1			1	
	101	VA hours Total	1	1			1	
1	1	IEC 61000-4-30 - PQ Profile		1				
•	1-2	V Unbalance (S2/S1) Total	2	MEAN	MAX		+	
	3-4	I Unbalance (S2/S1) Total	2	MEAN	MAX		+	
	5-4 5-6	Transformer K Factor A	2	MEAN	MAX			
	7-8		2					
	9-10	Transformer K Factor B Transformer K Factor C	2	MEAN MEAN	MAX MAX		+	

	11	Short Term Flicker A	1	I	1		1
	12	Short Term Flicker B	1				
	13	Short Term Flicker C	1				
	14	Long Term Flicker A	1				
	15	Long Term Flicker B	1				
	16	Long Term Flicker C	1				
	17-18	Voltage TID A	2	MEAN	MAX		
	19-20	Voltage TID B	2	MEAN	MAX		
	21-22	Voltage TID C	2	MEAN	MAX		
	23-24	Current TID A	2	MEAN	MAX		
	25-26	Current TID B	2	MEAN	MAX		
	27-28	Current TID C	2	MEAN	MAX		
	29-31	Current TDD A	3	MEAN	MAX	MIN	
	32-34	Current TDD B	3	MEAN	MAX	MIN	
	35-37	Current TDD C	3	MEAN	MAX	MIN	
	38-39	Voltage THD A	2	MEAN	MAX		
	40-41	Voltage THD B	2	MEAN	MAX		
	42-43	Voltage THD C	2	MEAN	MAX		
	44-45	Even THD Voltage A	2	MEAN	MAX		
	46-47	Even THD Voltage B	2	MEAN	MAX		
	48-48	Even THD Voltage C	2	MEAN	MAX		
	50-51	Odd THD Voltage A	2	MEAN	MAX		
	52-53	Odd THD Voltage B	2	MEAN	MAX		
	54-55	Odd THD Voltage C	2	MEAN	MAX		
	56-57	Current THD A	2	MEAN	MAX		
	58-59	Current THD B	2	MEAN	MAX		
	60-61	Current THD C	2	MEAN	MAX		
	62-63	Even THD Current A	2	MEAN	MAX		
	64-65	Even THD Current B	2	MEAN	MAX		
	66-67	Even THD Current C	2	MEAN	MAX		
	68-69	Odd THD Current A	2	MEAN	MAX		
	70-71	Odd THD Current B	2	MEAN	MAX		
	72-73	Odd THD Current C	2	MEAN	MAX		-
2	1-100	IEC 61000-4-30 - Harmonic Voltage A	100	MEAN	MAX		In RMS Volts
3	1-100	IEC 61000-4-30 - Harmonic Voltage B	100	MEAN	MAX		In RMS Volts
4	1-100	IEC 61000-4-30 - Harmonic Voltage C	100	MEAN	MAX		In RMS Volts
5	1-100	IEC 61000-4-30 - Interharmonic Voltage A	100	MEAN	MAX		In RMS Volts
6	1-100		100	MEAN	MAX		In RMS Volts
7	1-100	IEC 61000-4-30 - Interharmonic Voltage C	100	MEAN	MAX		In RMS Volts
8	1-100	IEC 61000-4-30 - Harmonic Current A	100	MEAN	MAX		In RMS Amps
9	1-100	IEC 61000-4-30 - Harmonic Current B	100	MEAN	MAX		In RMS Amps
10	1-100	IEC 61000-4-30 - Harmonic Current C	100	MEAN	MAX		In RMS Amps
11	1-100	IEC 61000-4-30 - Interharmonic Current A	100	MEAN	MAX		In RMS Amps
12	1-100	IEC 61000-4-30 - Interharmonic Current B	100	MEAN	MAX		In RMS Amps
13	1-100	IEC 61000-4-30 - Interharmonic Current C	100	MEAN	MAX		In RMS Amps

Data log #11 is preset as conventional data log as default, to configure it see <u>conventional data log</u>, to define it as IEC 61000-4-30 Profile log:

1. Select General Setup from the Meter Setup menu, and then click on the Device Options tab.

PM180 - General Setup		×
Digital Inputs Re	lay Outputs Counters Transformer Correc	ction Periodic Timers Local Settings
Basic Setup	Device Options Control/Alarm Setpoints	Analog Outputs Analog Inputs
	Power/Energy Options	
	Power Calculation Mode	S = f(P,Q) ▼
	Energy Roll Value	100000000
	Energy Decimals	
	Interval Energy, min	5
	Tariff Control	Tariff inputs DI1.
	Number of Tariffs	1
	TDD Setup	
	I Max. Load Current, A	ст
	I4 Max. Load Current, A	ст
	Test Mode	
	Energy LED Pulse Rate, Wh/impulse	0.10
	Energy LED Test	Disabled 💌
	Data Scales	
	Volts Scale, V	828
	Amps Scale, A	20.0
	Power Quality	
	PQ Option	EN 50160:2010 💌
	IEC 61000-4-30 Data Profile	Disabled •
Open	Save as Default Print	Send Receive
	ОК	Cancel Apply Help

- 2. Select "PQ Option": EN 50160:2010.
- 3. Click "IEC 61000-4-30 Data Profile": Enable.
- 4. Click OK, and then send your new setup to the device, or save to the device database.

	EN 50160:2010 Ha	armonics Setup	ult Recorder	Wa	veform Reco	order	Pro	grammable Mir	n/Max Log	
	Log Memory	Data Recorder	EN 50	160:2010 PQ	Recorder		EN 50160	:2010 Advand	ced Setup	
Т	otal memory: 2516	58240 bytes Free	memory: 12582	8200 bytes						
			Log	Files						1
Vo.	File	Туре	Size,	Sections/	Max.	Max.	Record	Para-	Logged	
			Bytes	Channels	Records	Events	Size	meters	Records	
1	Event Log	Wrap-around	40000		2000	2000	20		2000	
2	Data Log 1	Wrap-around	3072000		38400	38400	80	16	38400	
3	Data Log 2	Wrap-around	3072000		38400	38400	80	16	5552	
4	Data Log 3	Wrap-around	8000		100	100	80	16	0	
5	Data Log 4	Free								
6	Data Log 5	Free								
7	Data Log 6	Free								
8	Data Log 7	Free								
9	Data Log 8	Free								
10	Data Log 9	EN 50160:2010 Compliance	457600	11	260	260	160	36	0	
11	Data Log 10	EN 50160:2010 Harmonics	1272960	12	260	260	408	98	0	
12	Data Log 11	IEC 61000-4-30 Profile	51287040	14	8640	8640	424	102	0	L
13	Data Log 12	Free								ſ.
14	Data Log 13	Wrap-around	520000		10000	10000	52	9	0	
15	Data Log 14	Wrap-around	520000		10000	10000	52	9	0	
16	Data Log 15	Free								١,
			- 1		_	-		1		
	Open	Save as Clear	Print	Send	Receive		Configure File	s Setup	Recorder	

Factory Preset Fault and PQ Data Logs

Data logs #13 and #14 are factory preset for RMS trending on the fault and power quality events and are intended for the use with the Fault and PQ recorders. The default PQ and Fault data log configuration is shown in the following table.

No.	Parameter	No.	Parameter
Data	Log #13 (fault data trend)		
1	Generic V1	9	Generic V ZERO-SEQ
2	Generic V2	10	Generic VDC
3	Generic V3		
4	Generic V4		
5	Generic I1x		
6	Generic I2x		
7	Generic I3x		
8	Generic I4x		
Data	Log #14 (PQ data trend)		
1	Generic V1	9	Generic FREQ
2	Generic V2		
3	Generic V3		
4	Generic V4		
5	Generic I1x		
6	Generic I2x		
7	Generic I3x		
8	Generic I4x		

The generic data group represents generic volts, amps, etc., regardless of the data integration time. The PQ recorder can use different time envelopes to record data integrated over intervals from a half cycle to 10 minutes depending on the duration of the power quality event (see <u>Configuring the</u> <u>Power Quality Recorder</u>). The Fault recorder uses only the half-cycle RMS trend.

TOU Profile Data Log Files

Data log files #15 and #16 are configurable to store the TOU monthly profile log and the TOU daily profile log respectively.

A TOU profile log file is organized as a multi-section file that has a separate section for each TOU energy and maximum demand register. The number of sections is taken automatically from the Summary/TOU Registers setup (see <u>Configuring Summary and TOU Registers</u> in Chapter 8). Since each TOU energy register has a shadow maximum demand register, the number of sections in the file is twice the number of the allocated TOU registers.

In order to correctly allocate the memory space for TOU profile log files, assign TOU registers before you set up your TOU profile log files.

To configure a TOU daily profile log file:

- 1. Configure your TOU registers and TOU schedule before allocating memory for a profile log file (see <u>Configuring Summary and TOU Registers</u> in Chapter 8).
- 2. Select Memory/Log from the Meter Setup menu, and then click on the Log Memory tab.
- 3. Double click on the Data Log #15 or Data Log #16 partition row.

nfigure File Partition		[
File: Data Log 16 Free Memory: 182470760	Record Size: 28 Number of Records 65	535
- File Attributes	Available: 103	
Number of Records:	90 🔹	
Number of TOU Registers: Number of Season Tariffs:	3	Delete
File Type: TOU Daily Profile	· · · · ·	Cancel

- 4. Select the TOU Monthly Profile or TOU Daily Profile in the File Type box.
- 5. Select the number of season tariffs in your TOU schedule.

- 6. Select the maximum number of records you want to be recorded in the file assuming that a new record is added once a month or once a day.
- 7. Click OK and send your setup to the device or save to the database.

Configuring the Waveform Recorder

Waveform log files are organized as multi-section files that store data for each recording channel in a separate section.

A regular waveform log file records up to 12 analog channels simultaneously: eight AC channels (four voltages and four currents), one VDC channel, and up to 48 digital inputs DI1-DI16, DI17-DI32 and DI33-DI48 organized in three sections as three 16-bit analog channels.

A single channel waveform record contains 512 points of the sampled input signal. If a waveform log is configured to record more samples per event than a single record can hold, the waveform recorder stores as many records per event as required to record the entire event. All waveform records related to the event are merged in a series and have the same series number, so they can be plotted together.

The PM180 supports 8 waveform files that can record waveforms at four programmable sampling rates: 32, 64, 128 or 256 samples per cycle.

To configure a waveform log file:

- 1. Select Memory/Log from the Meter Setup menu, and then click on the Log Memory tab.
- 2. Double click on a waveform log partition with the left mouse button.
- 3. Select a file type for your file.
- 4. Select the maximum number of records to be recorded in the file.

The number of records in the waveform log file needed to store one waveform event (series) is defined as follows:

Number of Records per Series = Sampling Rate (Samples per Cycle) x Number of Cycles per Event / 512

The total number of records you must allocate to store the required number of events (series) is defined as follows:

Number of Records = Number of Records per Series x Number of Series

Configure File Partition		×
File: Waveform Log 7 Free Memory: 220207680	Record Size: Number of Records Available:	1072 17518
File Attributes Number of Records:	400 -	
Number of Channels:	12 🔹	Delete
Number of Parameters:	NONE	ОК
File Type: Wrap-around		Cancel
Number of Events = Number-of-Records/()	Samples-per-Cycle x Cy	des-per-Series (512)

For example, if you want to record a 64-cycle waveform sampled at a rate of 32 samples per cycle, the number of records required for one waveform series would be:

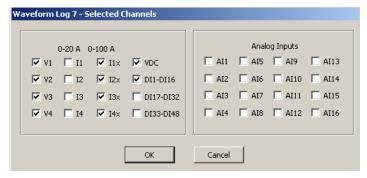
Number of Records per Series = $(32 \times 64)/512 = 4$.

If you want to allocate space sufficient to store 20 waveform events (series), you should set up the waveform log file for $4 \times 20 = 80$ records.

- 5. Click OK, and send your setup to the device or save to the database.
- 6. Click "Setup Recorder", or click on the "Waveform Recorder" tab.

The following table lists available waveform options.

Option	Range	Description
Samples per Cycle		Defines the sampling rate for the waveform log


Option	Range	Description
Cycles per Series	16-10848 (32 samples/cycle), 8-5424 (64 samples/cycle), 4-2712 (128 samples/cycle) 2-1356 (256 samples/cycle)	Defines the total duration of the waveform recording per event/series
Before Cycles	1-20	Defines the number of cycles to be recorded prior to the event
Num. of Channels	1-26	The number of the simultaneously recorded channels

7. Select the sampling rate for waveforms.

- 8. Select the number of cycles to be recorded prior to the event, and a total number of cycles in the waveform.
- 9. Add the name for your waveform log file in the "Name" box. It will appear in the waveform reports.

	Wavefor	m Logs	_	_	_	1	
No.	Name	Samples per Cycle	Cycles per Series	Before, Cycles	Num. of Channels		
1							
3							
4							
6						Channels:	
7		64 💌	64 32	3 🔽			
		120	32	<u> </u>	0		
ı	lumber of records required for one event's sample s	eries = Sample	s-per-Cycle x Cy	vcles-per-Serie	es / 512		
'	pen Save as	enes – Sample		Send	Receive	-1	

10. To select the channels, click on the "Channels" button, check the boxes for channels to be recorded, and then click OK. Note that the standard (20A) and extended (100A) current channels may not be recorded together in the same file.

11. Save your waveform setup to the site database, and send it to the device.

The picture above shows the factory preset waveform logs. Waveform log #7 is used with the PQ and Fault recorders to store fault events, and PQ transient and short duration events. Waveform log #8 is used with the PQ recorder to store waveforms related to harmonics events.

Configuring the IEEE 1159 Power Quality Recorder

The Power Quality (PQ) recorder identifies the IEEE 1159 power quality events and records them to the log file with the precise start and end timestamps and a fault magnitude. The IEEE 1159 PQ report can be retrieved from the device, stored on a PC and displayed on the screen as shown in Section "Viewing the IEEE 1159 Power Quality Log". Impulsive transients and short-duration voltage variations (sags and swells) can also be viewed as magnitude/duration pairs on the well-known ITIC curve chart for assessing the minimum equipment immunity.

The PQ recorder can trigger the waveform recorder to record the fault waveforms before, during and after the PQ event for detailed event analysis. It may be useful for troubleshooting problems throughout electrical networks, for example, to identify and locate the source of a power quality event and to select an appropriate solution.

PQ Events Evaluation

The events are classified in accordance with the IEEE 1159 power quality categories. The table below shows the categories recorded by the device, the metering data used to detect voltage and frequency faults, their typical triggering thresholds and event durations.

Impulsive transients

Impulsive transients are detected as impulses with a rise time less than 0.5 ms and duration from 80 us to ½ cycle. The impulse magnitude is measured as the overshoot voltage magnitude above the normal voltage wave shape. It is referenced to the normal peak voltage (1.414 Un). Sags and swells

A voltage sag or swell is classified as one polyphase event regardless of the shape and of the number of phases affected (as per IEC 61000-4-30). An event can begin on one phase and end on another phase. The fault magnitude is recorded separately for each phase involved. The event duration is measured from the instant at which the voltage falls/rises below/above the start threshold on one of the phases to that at which it becomes greater/lower than the end threshold on all affected phases including a threshold hysteresis.

Voltage Interruptions

The voltage interruption is detected when the voltages on all phases fall below the interruption threshold (as per IEC 61000-4-30).

Flicker

The flicker is evaluated according to IEC 61000-4-15. The 10-min Pst values are used to follow and indicate the flicker faults.

Event ID	IEEE 1159 category	Trigger parameter	Reference value	Typical thresholds, %	Event duration
PQE11	Impulsive transients	Instantaneous overshoot voltage	Un peak voltage	20-200%	80 us–10 ms
PQE211	Instantaneous sag	1/2 cycle RMS voltage	Un RMS	80-90%	< 30 cycles
PQE212	Instantaneous swell	1/2 cycle RMS voltage	Un RMS	110-120%	< 30 cycles
PQE221	Momentary interruption	1/2 cycle RMS voltage	Un RMS	0-10%	< 3 sec
PQE222	Momentary sag	1/2 cycle RMS voltage	Un RMS	80-90%	< 3 sec
PQE223	Momentary swell	1/2 cycle RMS voltage	Un RMS	110-120%	< 3 sec
PQE231	Temporary interruption	1/2 cycle RMS voltage	Un RMS	0-10%	< 1 min
PQE232	Temporary sag	1/2 cycle RMS voltage	Un RMS	80-90%	< 1 min
PQE233	Temporary swell	1/2 cycle RMS voltage	Un RMS	110-120%	< 1 min
PQE31	Sustained interruption	1/2 cycle RMS voltage	Un RMS	0-10%	> 1 min
PQE32	Undervoltage	1/2 cycle RMS voltage	Un RMS	80-90%	> 1 min
PQE33	Overvoltage	1/2 cycle RMS voltage	Un RMS	110-120%	> 1 min
PQE4	Voltage unbalance	β-sec negative sequence unbalance	No	1-5%	Steady state
PQE52	Harmonics THD	β-sec harmonic THD	No	5-20%	Steady state
PQE53	Interharmonics THD	β-sec interharmonic THD	No	2-8%	Steady state
PQE6	Voltage fluctuations (flicker)	10-min Pst	No	1-5	Steady state
PQE7	Frequency variations	3-sec frequency	Nominal frequency	1-6%	Steady state

Un – nominal device voltage

PQ Recorder Setup

The IEEE 1159 PQ recorder setup allows you to adjust thresholds and hysteresis for PQ triggers, to define the waveform and data log options for PQ events, and to enable or disable the PQ recorder in your device.

To configure the PQ recorder:

- 1. Select Memory/Log from the Meter Setup menu, and then click on the PQ Recorder tab.
- 2. If you want to change the default settings, adjust thresholds and hysteresis for PQ triggers
- 3. Select the waveform and data logging options for PQ events
- 4. Download your setup to the device.

×

PM180_USB – Log Setup

Log Memory Data Recorder Waveform Recorder IEEE 1159 PQ Recorder Fault Recorder Programmable Min/Max Log

PQ Events and Recording													
	PQ	_og	Wau	aveform Log Data/RMS Trend - Time Envelopes and Maxir								Duration	าร
Event Category	Thresh- old,%	Hyste- resis,%	On Start	On End	Log No.	Ena- bled	1/2-cyc, Cycles	0.2-sec, seconds	3-sec, minutes	10-min, hours	Before, Cycles	After, Cycles	Log No.
Impulsive Transients	20.0	5.0	V		8 🔻								
Sag/Undervoltages	90.0	5.0	•		7 💌		30	3	3	0	2 🔻	2 🔻	14
Swell/Overvoltages	110.0	5.0	•		7 💌		30	3	3	0	2 🔻	2 🔻	14
Interruption	10.0	5.0	•		7 💌		30	3	3	0	2 🔻	2 🔻	14
Voltage Unbalance	5.0	5.0			7 💌				3	0			14
Frequency Variations	1.0	5.0			7 💌				3	0			14
Harmonics, THD	8.0	5.0			8 🔻				3	0			14
Interharmonics, THD	2.0	5.0			8 🔻				3	0			14
Voltage Fluctuations (Flicker)	1.0	5.0			8 🔻				0	3			14
Image: Save as Image: Default Print Send Receive													
								OK	Cance		Apply	ŀ	lelp

The available PQ recorder options are shown in the following table:

Option	Range	Default	Description
Thresholds		-	
Threshold, %	0-200.0%		Defines the operating threshold for the PQ trigger in percent of the nominal (reference) value
Hysteresis, %	0-50.0%	5.0	Defines the hysteresis for PQ trigger in percent of the threshold
Waveform Log		-	
On Start	Checked Unchecked	Checked	Enables waveform log when the PQ event starts
On End	Checked Unchecked	Unchecked	Enables waveform log when the PQ event ends
Log No.	1-8	7	Specifies the waveform log file used for waveform recording on the PQ event
Data/RMS Plot			
Enabled	Checked Unchecked	Unchecked	Enables concurrent RMS trace plot to the data log file while the PQ event continues
1/2-cyc	0-10,000 cycles	30	Duration of the 1/2-cycle data trace
0.2-sec	0-10,000 seconds	3	Duration of the 0.2-second data trace
3-sec	0-10,000 minutes	3	Duration of the 3-second data trace
10-min	0-10,000 hours	0	Duration of the 10-minute data trace
Before, Cycles	0-20 cycles	2	The number of cycles to be recorded prior to the event
After, Cycles	0-20 cycles	2	The number of cycles to be recorded after the event
Log No.	14		Specifies the data log file used for data recording on the PQ event

The Sag, Swell and Interruption triggers use the same waveform and data log options. If you change one of them, the others are automatically adjusted to the same setting.

The waveform log option allows recording waveforms both at the start and the end of a PQ event. Since the voltage variations may last from some seconds to minutes, this allows capturing and analyzing the voltage transitions using short time waveform recording at the start and the end of the voltage sag or swell.

The data log option allows concurrent recording of the RMS data at a variable rate depending on the PQ event duration. To reduce the memory consumption for recording long duration events, the PQ recorder uses different time envelopes (aggregation intervals) for data tracing and changes the recording rate accordingly. You can specify for each PQ trigger how much time to record data using one or more time envelopes.

To enable or disable the PQ recorder:

- 1. Check or uncheck the "Recorder Enabled" checkbox.
- 2. Send your setting to the device.

Power Quality Event Indication and Cross Triggering

When the PQ recorder detects a power quality fault, it generates the specific internal event PQ EVENT that can be monitored through a control setpoints to give a fault indication via relay contacts. The event can be found under the STATIC EVENTS group in the setpoints trigger list.

The power quality fault signal is used for cross triggering multiple recorders through a dedicated digital input in order to simultaneously record disturbances at different locations. External triggering of the Waveform and Data recorders for recording disturbance data can be done through a setpoints programmed to monitor the status of a digital input. For more information on cross triggering, see <u>Fault Indication and Cross Triggering</u>.

Configuring the EN50160 Power Quality Recorder

EN50160 Background

The EN50160 European standard "Voltage characteristics of electricity supplied by public distribution systems" issued by CENELEC defines the main physical characteristics of electric energy supplied by low and medium voltage public distribution systems under normal operating conditions.

The voltage characteristics are evaluated using a statistical approach. The standard and its referenced publications specify for each voltage characteristic:

- Method of evaluation
- Integrating interval for a single measurement
- Observation period
- Statistical indication of the probability of not exceeding a specified limit
- Standard compliance limits or indicative values within which any customer can expect the voltage characteristics to remain

Note:

For EN51060: 2007 edition follow the manual below, for EN 50160: 2010 see PM180 EN50160-2010 PQ Recorder - Application Note - BB0180 REV.A1

Compliance Limits

For some voltage characteristics, the standard provides definite limits that can be complied with for most of the time considering the possibility of relatively rare excursions beyond these limits. Limits are set with a view to compliance for a percentage of the observation time, e.g. 95% of the observations in any period of one week.

The following table gives the characteristics for which definite limits have been specified by the standard.

Voltage characteristic	Compliance with stated limits, % of time	Observation period
Power frequency	±1% for 95% of a week ±1% for 99.5% of a year +4/-6% for 100% of time	Week, year
Voltage variations (supply voltage magnitude)	±10% Un for 95% of time	Week
Rapid voltage changes	≤4-5% Un (up to 10% Un)	Day
Flicker (fluctuations of voltage magnitude)	Plt \leq 1 for 95% of time	Week
Voltage unbalance	≤2-3% for 95% of time	Week
Harmonic voltage	THD ≤ 8 for 95% of time	Week
Interharmonic voltage	To be defined	Week
Mains signaling voltage	Within "Meister-curve" for 99% of time	Day

Indicatives Values

For the remaining characteristics of the voltage, by their unpredictable nature, the standard gives only indicative values, which are intended to provide users with information on the expected order of magnitude.

The following table gives the characteristics for which indicative values have been specified by the standard.

Voltage Characteristic	Indicative values	Observation period
Voltage dips	Less than 1 s, 60% depth	Year
Short interruptions	70% less than 1 s	Year
Long interruptions	10 to 50% less than 3 min	Year
Temporary overvoltages	Less than 1.5 kV RMS	Year
Transient overvoltages	Less than 6 kV peak	Year

Resources

CENELEC publications:

EN 50160:2007 Voltage characteristics of electricity supplied by public distribution systems EN 50160:2010 Voltage characteristics of electricity supplied by public distribution systems

IEC publications:

IEC 61000-4-7:2002 Electromagnetic compatibility (EMC) – Part 4-7 Testing and measurement techniques – General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto,

IEC 61000-4-15:2003 Electromagnetic compatibility (EMC) – Part 4 Testing and measurement techniques – Section 15: Flickermeter – Functional and design specifications

IEC 61000-4-15:2010 Electromagnetic compatibility (EMC) – Part 4 Testing and measurement techniques – Section 15: Flickermeter – Functional and design specifications

IEC 61000-4-30:2003 Electromagnetic compatibility (EMC) – Part 4-30 Testing and measurement techniques – Power quality measurement methods

IEC 61000-4-30:2015 Electromagnetic compatibility (EMC) – Part 4-30 Testing and measurement techniques – Power quality measurement methods

IEC 62586-1:2013 Power quality measurements in power supply systems – Part 1 Power Quality Instruments (PQI)

IEC 62586-2:2017 Power quality measurements in power supply systems – Part 2 Functional resrs and uncertainty requirements

Eurelectric (Union of the Electricity Industry) publications:

Application guide to the European Standard EN 50160 on Voltage characteristics of electricity supplied by public distribution systems, Ref: 23002 Ren9530, July 1995

Measurement guide for voltage characteristics, Ref: 23002 Ren9531, July 1995

Evaluation Techniques

EN50160 Evaluation Counters

Evaluation Counters and Evaluation Period

The PM180 uses a set of the evaluation counters for collecting EN50160 statistics within a specified evaluation period.

The evaluation period is the period of time within which the device collects statistical evaluation data. Supply voltage characteristics can be evaluated on a weekly or daily basis. The evaluation period normally preset in your device is a week; this can be changed via the EN50160 Advanced setup.

At the end of the evaluation period, the device records collected statistical evaluation data to a log file, then clears the evaluation registers and counters so that each evaluation period's statistics is stored in a separate record.

You can upload and view the online statistics data via PAS reports, using data collected since the beginning of the present evaluation interval. You can also manually clear the present contents of the counters though PAS before starting your EN50160 evaluation.

Observation Period

The observation period is the period of time within which the voltage characteristics shall be assessed to ensure compliance with the standard. The observation periods declared by the

EN50160 may differ for characteristics for which compliance limits are specified in the standard, usually one week, and for those for which only indicative values are provided, usually one year.

The EN50160 compliance reports produced by PAS provide correct weekly and yearly observation statistics regardless of the evaluation periods used for collecting data. Whenever needed, PAS aggregates records within a number of the evaluation intervals to provide correct observation periods. Some of the characteristics, like rapid voltage changes or mains signaling voltage, may require daily assessments. If you intend to use daily-evaluated voltage characteristics, select the daily evaluation period via the EN50160 Advanced setup.

EN50160 Compliance Statistics Log

Data log file #9 is automatically configured in the PM180 for recording EN50160 compliance statistics. Appendix D lists parameters recorded to the file. The file is arranged as a multi-section data log file where each voltage characteristic statistics is stored in a separate section. Along with EN50160 compliance statistics recorded at the end of each evaluation period, file also contains data that may be useful for troubleshooting power quality problems for non-compliant voltage characteristics.

You can upload and view the EN50160 compliance statistics data via PAS reports or via common PAS data logs views.

EN50160 Harmonics Survey Log

Data log file #10 is automatically configured in the PM180 for recording harmonics survey statistics on a weekly or daily basis. You can see parameters recorded to the file in Appendix D. The file stores maximum THD (total, odd and even harmonics) and maximum harmonic voltages up to order 50 collected within each evaluation period.

Harmonics survey is normally intended for troubleshooting harmonic problems throughout electrical networks. It can be separately disabled or enabled in your device via the EN50160 Advanced Setup. The evaluation period for harmonics survey can be selected independently from the EN50160 compliance evaluation.

You can upload and view the harmonics survey data collected by your device via PAS reports or via common PAS data logs views.

EN50160 Power Quality Event Log

The PM180 provides the EN50160 Power Quality (PQ) recorder that can detect EN50160 incidents and record each individual power quality event to the log file with the start and end timestamps and a fault magnitude. It may be useful for troubleshooting problems throughout the electrical network, for example, to identify and locate the source of a power quality event and to select an appropriate solution.

The EN50160 power quality report can be uploaded and viewed via PAS (see <u>Viewing EN50160</u> <u>Power Quality Event Log</u>). Transient overvoltages and short-duration voltage dips and temporary overvoltages recorded to the file can also be viewed in PAS as magnitude/duration pairs on the well-known ITIC curve chart for assessing the minimum equipment immunity.

The PQ recorder can trigger the waveform recorder to record the fault waveforms before, during and after the PQ event for detailed event analysis.

Methods of Evaluation

This section describes methods used by the PM180 for evaluating supply voltage characteristics to ensure compliance with the standard.

Frequency Variations

Method of Evaluation

The basic frequency measurement is the mean value of the frequency over fixed time intervals of 10 seconds under normal operating conditions.

A frequency variation is not evaluated if the supply voltage crosses a voltage tolerance limit ($\pm 15\%$ Un).

Target Values

The ranges of frequency variations given in the EN50160 are:

50Hz±1% for 95% of a week 50Hz±1% for 99.5% of a year 50Hz+4/-6% for 100% of the time The same limits are used for 60Hz systems. The frequency compliance limit can be programmed in the device in percent of the nominal power frequency via the EN50160 PQ Recorder setup.

Supply Voltage Variations

This characteristic defines slow variations of steady state supply voltage magnitude.

Method of Evaluation

The basic supply voltage magnitude measurement is the RMS value of the steady state voltage over a period of 10 minutes under normal operating conditions.

A voltage variation is not evaluated if the supply voltage crosses a voltage tolerance limit ($\pm 15\%$ Un).

Target Values

The range of voltage variations given in the EN50160 is:

 $\pm 10\%$ Un for 95% of a week

The supply voltage compliance limit can be changed in the device via the EN50160 PQ Recorder setup.

Rapid Voltage Changes

Rapid voltage changes are sudden but relatively weak voltage variations between two steady state voltage levels.

Method of Evaluation

Evaluation of rapid voltage changes is made on an hourly basis. The RMS voltage is evaluated over 3-second time integration intervals. The device establishes the maximum difference of the RMS voltage between two intervals selected from three 3-second consecutive intervals and compares it with the target compliance limit.

A rapid voltage change is not classified if it crosses a voltage tolerance limit (\pm 10% Un), as it would be considered a voltage dip or a temporary overvoltage.

Target Values

The maximum rate of rapid voltage changes in normally once per hour or less. For voltage variations repeating more than once an hour, amplitude is limited by the flicker index. The maximum rate of rapid voltage changes in variations per hour can be changed in the device via the EN50160 Advanced Setup. The target magnitude limit of rapid voltage changes can be programmed in the device via the EN50160 PQ Recorder setup.

Under usual operating conditions the magnitude of rapid voltage changes (once per hour or less) should generally not exceed 5% of nominal voltage in LV networks, and 4% in MV networks. In some circumstances, like in systems where equipment switching must be carried out to meet supply system or load requirements, it can reach 10%Un in LV networks, and 6%Un in MV networks.

Flicker

Flicker expresses the visual discomfort caused by repetitive changes of brightness in lightning subjected to fluctuations of the supply voltage. Flicker is indicated by the long-term flicker severity parameter Plt, which is evaluated every 2 hours.

Method of Evaluation

The basic flicker measurement is the short-term flicker severity indicator Pst, evaluated each 10 minutes by instrumentation complying with IEC 61000-4-15. The indicative long-term flicker severity Plt is evaluated from 12 consecutive Pst values. For testing purposes, the Pst period can be temporarily changed in the device in the range of 1 to 10 minutes via the EN50160 Advanced Setup.

Pst values are not classified during intervals when the supply voltage magnitude exceeds a voltage tolerance limit (\pm 15% Un) or is affected by voltage dips with depth more than 15% Un.

Target Values

The flicker compliance limit given in the EN50160 is:

Plt \leq 1 for 95% of a week

The Plt compliance limit can be changed in the device via the EN50160 PQ Recorder setup.

Voltage Dips

A voltage dip is a sudden reduction of the RMS voltage below 90% of the nominal value, followed by a return to a value higher than 90% of the nominal in a time varying from 10 ms to 60 s.

Method of Evaluation

A voltage dip is classified as one polyphase event regardless of the shape and of the number of phases affected (as per Eurelectric's Application guide to the European Standard EN 50160, and IEC 61000-4-30). An event can begin on one phase and end on another phase. The fault magnitude is recorded separately for each phase involved. The event duration is measured from the instant at which the voltage falls below the start threshold on one of the phases to that at which it becomes greater than the end threshold on all affected phases including a threshold hysteresis.

The basic voltage dip measurement is one-cycle RMS voltage updated each half-cycle.

The voltage dip threshold can be changed in the device via the EN50160 PQ Recorder setup.

Statistical Results

The PM180 provides the statistical evaluation of voltage dips using the classification established by UNIPEDE. Dips are classified by residual voltage magnitude and duration as shown in Appendix D.

Indicative Values

Under normal operating conditions the expected number of voltage dips in a year may be from up to a few tens to up to one thousand. The majority of voltage dips have duration less than 1 s and a depth less than 60%.

Voltage Interruptions

Voltage interruptions correspond to temporary loss of supply voltage on all phases lasting less than or equal to 3 minutes in the event of short interruptions, and more than 3 minutes for long interruptions.

Method of Evaluation

The voltage interruption is detected when the voltages on all phases fall below the interruption threshold (as per IEC 61000-4-30) specified by the EN50160 at a level of 1% Un. The interruption threshold can be changed in the device via the EN50160 PQ Recorder setup.

The basic voltage measurement is one-cycle RMS voltage updated each half-cycle.

Statistical Survey

The PM180 provides the statistical evaluation of voltage interruptions using the classification recommended by Eurelectric's Measurement guide for voltage characteristics.

Interruptions are classified by duration as shown in Appendix D.

Indicative Values

Under normal operating conditions the expected number of short voltage interruptions in a year may be from up to a few tens to up to several hundreds. Short interruptions generally last less than a few seconds.

The annual frequency of long interruptions may be less than 10 or up to 50 depending on the area.

Temporary Overvoltages

Temporary overvoltages are sudden rises of the voltage RMS value of more than 110% of nominal voltage. Temporary overvoltages may last between 10 milliseconds and one minute.

Method of Evaluation

A temporary overvoltage is classified as one polyphase event regardless of the shape and of the number of phases affected (as per IEC 61000-4-30). An event can begin on one phase and end on another phase. The fault magnitude is recorded separately for each phase involved. The event duration is measured from the instant at which the voltage rises above the start threshold on one of the phases to that at which it becomes lower than the end threshold on all affected phases including a threshold hysteresis.

The overvoltage threshold can be changed in the device via the EN50160 PQ Recorder setup.

The basic voltage measurement is one-cycle RMS voltage updated each half-cycle.

Statistical Survey

The PM180 provides the statistical evaluation of temporary overvoltages using the classification recommended by Eurelectric's Measurement guide for voltage characteristics. Temporary overvoltages are classified by voltage magnitude and duration as shown in Appendix D.

Indicative Values

Temporary overvoltages on the low voltage side will generally not exceed 1.5 kV RMS.

Transient Overvoltages

Transient overvoltages correspond to disturbances of very short duration, lasting typically less than one half-cycle, i.e. a few microseconds to several milliseconds.

Method of Evaluation

Transient overvoltages are detected as impulsive transients with a rise time less than 0.5 ms and duration from 80 us to $\frac{1}{2}$ cycle. The impulse magnitude is evaluated by the peak voltage value and is referenced to the nominal peak voltage (1.414 Un). The device can detect transient overvoltages with a magnitude of up to 700V.

Statistical Survey

The PM180 provides the statistical evaluation of transient overvoltages using the classification recommended by Eurelectric's Measurement guide for voltage characteristics. Transient overvoltages are classified by voltage magnitude as shown in Appendix D.

Indicative Values

Temporary overvoltages in LV systems will generally not exceed 6 kV peak, but higher values occur occasionally.

Voltage Unbalance

This characteristic defines the magnitude and/or phase asymmetries of three-phase steady state supply voltage.

Method of Evaluation

The basic measurement is the RMS value of the steady state voltage unbalance over a period of 10 minutes under normal operating conditions. It is defined using the theory of symmetrical components by the negative sequence component expressed in percent of the positive sequence component.

Voltage unbalance is not evaluated if the supply voltage crosses a voltage tolerance limit ($\pm 15\%$ Un).

Target Values

The range of voltage unbalance given in the EN50160 is:

 \leq 2% (\leq 3% in some areas) for 95% of a week

The voltage unbalance compliance limit can be changed in the device via the EN50160 PQ Recorder setup.

Harmonic Voltage

Method of Evaluation

The basic measurements are the individual harmonic voltage distortion factors (HD) and the total harmonic distortion factor (THD) over a period of 10 minutes under normal operating conditions.

Harmonic voltages are evaluated by instrumentation complying with IEC 61000-4-7. All calculations are made relative to the nominal voltage.

THD is evaluated including all harmonics up to the order 40. Harmonic voltages are evaluated up to the order 25 since the EN50160 provides target values for individual harmonic voltages only for orders up to 25. The highest harmonic order for evaluating individual harmonic voltages and THD can be changed in the device in the range of 25 to 50 via the EN50160 Advanced Setup.

Harmonic voltages are not evaluated if the supply voltage crosses a voltage tolerance limit ($\pm 15\%$ Un).

Target Values

The ranges of harmonic voltages given in the EN50160 are:

THD \leq 8% for 95% of a week

Individual harmonic voltages shall be less than or equal to the values given in Table 1 in Clause 2.11 of the EN50160 for 95% of a week.

The THD compliance limit can be changed in the device via the EN50160 PQ Recorder setup. The individual harmonic voltage limits can be adjusted via the EN50160 Harmonics setup.

Interharmonic Voltage

Method of Evaluation

Since the EN50160 does not specify target limits for interharmonic voltages, this feature is normally disabled. You can enable evaluation of interharmonic voltages via the EN50160 Advanced Setup.

The basic measurements are the individual interharmonic voltage distortion factors (HD) and the total interharmonic distortion factor (THD) over a period of 10 minutes under normal operating conditions.

Interharmonic voltages are evaluated by instrumentation complying with IEC 61000-4-7. All calculations are made relative to the nominal voltage.

The highest harmonic order for evaluating individual interharmonic voltages and interharmonic THD can be selected in the device in the range of 25 to 50 via the EN50160 Advanced setup.

Interharmonic voltages are not evaluated if the supply voltage crosses a voltage tolerance limit (\pm 15% Un).

Target Values

The EN50160 does not provide target limits for interharmonic voltages. The ranges of interharmonic voltages selected in the PM180 are:

Interharmonic THD \leq 2% for 95% of a week

Individual interharmonic voltages shall be less than or equal to the values given in the following table for 95% of a week.

Interharmonic order	Relative Voltage					
2	0.2					
3-15	1.0					
16-25	0.5					

You can change the compliance limit for the interharmonic THD via the EN50160 PQ Recorder setup. The individual interharmonic voltage limits are changed via the EN50160 Harmonics setup.

Mains Signaling Voltage

This characteristic defines the magnitude of the signal voltages used in some countries for signal transmission over public supply networks. These may include ripple control signals in a frequency range from 100 HZ to 3 kHz, and carrier wave communications signals in a frequency range from 3 kHz to 148.5 kHz.

The PM180 evaluates ripple control signaling voltages in a frequency range from 100 Hz to 3 kHz.

Method of Evaluation

Since evaluating signal voltages is not commonly used, this feature is normally disabled. You can enable evaluation of signaling voltages via the EN50160 Advanced Setup.

The PM180 can evaluate up to four ripple control frequencies. You can select the required signaling frequencies via the EN50160 Advanced Setup.

The basic measurement is the magnitude of the signaling voltage over a period of 3 seconds under normal operating conditions.

Signaling voltages are not evaluated if the supply voltage crosses a voltage tolerance limit ($\pm 15\%$ Un).

Target Values

The voltage levels given by the EN50160 in Figure 1 of Clause 2.13 are taken from the so-called "Meister-curve" which defines the maximum permissible ripple control voltages in LV networks.

Compliance with the EN50160 requires that the 3-second mean of signal voltages shall be less or equal to the specified limits for 99% of a day.

Configuring the EN50160 Recorders

Basic Device Settings

The following device settings affect the EN50160 evaluation and should be checked prior to running the EN50160 recorders.

Reference Voltage

As the general approach of the EN50160, all voltage characteristics are referenced to the nominal voltage that shall be specified in the PM180 by the secondary line-to-line voltage (see Basic Device Setup) regardless of the wiring mode. The nominal voltage refers to the line-to-neutral supply voltage in LV networks (4LN3, 3LN3 or 3BLN3 wiring modes), and to line-to-line voltage in MV networks (4LL3, 3LL3, 3BLN3, 3OP2, 3OP3 and 3DIR2 wiring modes).

Reference Frequency

The nominal line frequency is used as a reference for the evaluation of power frequency variations. It should be specified in your device before running the EN50160 recorders (see <u>Basic Device</u> <u>Setup</u>).

EN50160 Evaluation Limits and Options

Limits for evaluation of the EN50160 voltage characteristics may be set via the <u>EN50160 PQ</u> <u>Recorder Setup</u> and, for harmonic and interharmonic voltages, via the EN50160 Harmonics setup (see <u>EN50160 Harmonics Limits Setup</u>).

The EN50160 evaluation options can be changed via the EN50160 Advanced Setup.

EN50160 Logging Options

The memory allocated in your device for the EN50160 compliance statistics and harmonics survey data is sufficient for 3-month data recording on a weekly basis. The Power Quality event log file is configured for 1000 event records. You can increase or change the size of the EN50160 data log files in your device via the Log Memory Setup (see <u>Configuring Device Memory</u>).

EN50160 PQ Recorder Setup

The PQ recorder setup allows you to adjust the EN50160 evaluation limits (thresholds) for the specific voltage characteristics in the case the customer requirements differ from the values provided by the EN50160, and to select the event and waveform log options for the PQ event log. To configure the PQ recorder:

- 1. Select Memory/Log from the Meter Setup menu, and then click on the EN50160 PQ Recorder tab.
- 2. Adjust thresholds and hysteresis for PQ triggers if required. The harmonic and interharmonic voltage limits can be individually set for each harmonic order via the EN50160 Harmonics setup. Limits for the signaling voltage frequencies are automatically taken from the "Meister-curve".
- 3. Check the Enabled box for the voltage characteristics you want to be recorded to the PQ event log. You can individually enable or disable recording PQ events related to specific characteristics. Notice that the interharmonic voltage and mains signaling voltage evaluation should be also enabled in the device via the EN50160 Advanced Setup.

Disabling recording events to the PQ log does not prevent the evaluation of the voltage characteristics and collecting the EN50160 statistics for these events.

ng Memory Data Recorder \	Vaveform I	Recorder	EN50	160 PQ	Hecor	der	EN	50160	Advanced	Setup EN	150160 Ha	irmonics S	ietup Fa	ault Reco	rder
PQ Events and Recording															
	I	PQ Log		Wav	eform	i Log		Dat	a/RMS Tre	end - Time	e Envelop	es and N	/laximun	n Duratio	ns
Event Category	Thresh- old,%	Hyste- resis,%	Ena- bled	On Start	On End	Lo: No		Ena- bled	1/2-cyc, cycles	0.2-s, seconds	3-s, minutes	10-min, hours	Before, cycles	After, cycles	Log No.
ower Frequency, dF/Fn	1.0	0.1	•			7	•				3				14
oltage Variations, dV/Un	10.0	2.0	~			7	•					3			14
apid Voltage Changes, dV/Un	6.0	2.0	~			7	•								
icker Severity, Ptt	1.0	5.0	~			7	•					3			14
oltage Dips, %Un	90.0	2.0	~	~		7	•		30	3	3	0	2 💌	2 💌	14
ottage Interruptions, %Un	1.0	2.0	~	~		7	•		30	3	3	0	2 💌	2 💌	14
emporary Overvoltages, %Un	110.0	2.0	~	~		7	•		30	3	3	0	2 💌	2 💌	14
ransient Overvoltages, %Un	120.0	2.0	~	~		8	•								
ottage Unbalance, %	2.0	5.0	~			7	•					3			14
armonic THD, %	8.0	5.0	~			8	•					3			14
armonic Voltage, %Un		5.0	~			8	•					3			14
terharmonic THD, %	2.0	5.0				8	•					3			14
terharmonic Voltage, %Un		5.0				8	•					3			14
ains Signaling Voltage, %Un		2.0				8	•				3				14
Recorder Enabled	Оре	n	Save	e as		Def	ault		Print		Send		Receive		

Figure 7-1 EN50160:2007 PQ recorder

EN 50160:2010 Harmonics Setup		ault Record	Programmable Min/Max Log								
Log Memory Data F	Recorder		EN 50160	:2010 PQ R	ecorder		EN 50	160:2010	Advanc	ed Set	up
		PQ	Events and	l Recordin	g						
			Threst	nolds			PQ	Log	Wav	eform	n Log
Event Category	Per- centile rank,%	High norm. perm.	Low norm. perm.	High max. perm.	Low max. perm.	Hyste- resis, %	On norm. perm.	On max. perm.	On start	On end	Log No.
Frequency Variation, +/-dF, %Fn	99.5	1.00	-1.00	4.00	-6.00	5.0	•				7
/oltage Variation, +/-dU, %Un	95.0	10.00	-10.00	10.00	-15.00	2.0	•				7
Rapid Voltage Change, dU, %Un		10.00				2.0	~				7
flicker, Plt	95.0	1.00				5.0	~				7
/oltage Unbalance, %	95.0	2.00				5.0	~				7
/oltage THD, %	95.0	8.00				5.0	~				8
larmonic Voltages, %	95.0					5.0	~				8
nterharmonic Voltages, %	95.0					5.0					8
/lains Signaling Voltage, %Un	99.0	0.00				2.0					8
/oltage Interruption, %Un		5.00				2.0	~		•		7
/oltage Dip, %Un		90.00				2.0	~				7
/oltage Swell, %Un		110.00				2.0	~		•		7
Fransient Overvoltage, %Un		50.00				2.0	~				6
Recorder Enabled Open		/e as	Defau		Print		Send		ceive		

Figure 7-2 EN50160:2010 PQ recorder

- 4. Select the waveform logging options for PQ events.
- 5. Download your setup to the device.

The picture above shows the default PQ recorder settings. The available options are listed in the following table.

Option	Range	Default	Description
PQ Log			
Threshold, %	0-200.0%		Defines the operating threshold for the PQ trigger in percent of the nominal (reference) value
Hysteresis, %	0-50.0%		Defines the hysteresis for the PQ trigger in percent of the threshold

Option	Range	Default	Description
Enabled	Checked		Enables recording PQ events for specific voltage
	Unchecked		characteristics
Waveform	Log		
On Start	Checked Unchecked	Checked	Enables waveform log when the PQ event starts
On End	Checked Unchecked	Unchecked	Enables waveform log when the PQ event ends
Log No.	7-8		Specifies the waveform log file used for waveform recording on the PQ event

The waveform log options allow recording waveforms both at the start and the end of a PQ event. Since the voltage variations can last from some seconds to minutes, this allows capturing and analyzing the voltage transitions using short time waveform recording at the start and at the end of the voltage sag or swell.

You can temporary disable the PQ recorder in your device. To enable or disable the PQ recorder:

- 1. Check or uncheck the "Recorder Enabled"
 - checkbox.
- 2. Send your setting to the device.

Note that disabling the PQ recorder in your device does not affect the evaluation and recording of the EN50160 statistics.

Power Quality Event Indication and Cross Triggering

When the PQ recorder detects a power quality fault, it generates the specific internal event PQ EVENT that can be monitored through a control setpoints to give a fault indication via relay contacts. The event can be found under the STATIC EVENTS group in the setpoints trigger list.

The power quality fault signal is used for cross triggering multiple recorders through a dedicated digital input in order to simultaneously record disturbances at different locations. External triggering of the Waveform and Data recorders for recording disturbance data is done through a setpoints programmed to monitor the status of a digital input. For more information on cross triggering, see Fault Indication and Cross Triggering.

EN50160 Harmonics Limits Setup

This setup allows you to adjust compliance limits for harmonic and interharmonic voltages. To change the default limits in your device:

1. Select Memory/Log from the Meter Setup menu, and then click on the EN50160 Harmonics setup tab.

M180_USB - Log Sett		Vaveform Becc	order Í EN	50160 P0 Ber	order)	EN501607	Advanced Setur	- EN50	160 Harmonic:	: Setu	P Fault Recorder
		irmonic Volta					harmonic Vol				
	H02	2.00	H03	5.00		H02	0.20	H03	1.00		
	H04	1.00	H05	6.00		H04	1.00	H05	1.00		
	H06	0.50	H07	5.00		H06	1.00	H07	1.00		
	H08	0.50	H09	1.50		H08	1.00	H09	1.00		
	H10	0.50	H11	3.50		H10	1.00	H11	1.00		
	H12	0.50	H13	3.00		H12	1.00	H13	1.00		
	H14	0.50	H15	0.50		H14	1.00	H15	1.00		
	H16	0.50	H17	2.00		H16	0.50	H17	0.50		
Default	H18	0.50	H19	1.50		H18	0.50	H19	0.50		Default
	H20	0.50	H21	0.50		H20	0.50	H21	0.50		
	H22	0.50	H23	1.50		H22	0.50	H23	0.50		
	H24	0.50	H25	1.50		H24	0.50	H25	0.50		
	H26	0.50	H27	1.50		H26	0.50	H27	0.50		
	H28	0.50	H29	1.50		H28	0.50	H29	0.50		
	H30	0.50	H31	1.50		H30	0.50	H31	0.50		
	H32	0.50	H33	1.50	-	H32	0.50	H33	0.50	•	
		Open	Sa	ve as	Prin	it	Send	Rec	ceive		
							OK	Ca	ancel	App	y Help

- 2. Adjust limits you want to change.
- 3. Download your setup to the device.

The default EM50160 compliance limits are shown in the picture above. You can change the number of the evaluated harmonics and interharmonics via the <u>EN50160 Advanced Setup</u>.

EN50160 Advanced Setup

The EN50160 Advanced Setup allows you to configure the EN50160 evaluation options in your device.

To configure the EN50160 evaluation options:

- 1. Select Memory/Log from the Meter Setup menu, and then click on the EN50160 Advanced Setup tab.
- 2. Change the EN50160 evaluation options if required.
- 3. Download your setup to the device.

The default EN50160 evaluation options set in your device are shown in the picture below.

EN50160 Compliance Sta Evaluation	Enabled	-	Interharmonic Volta	Disabled 💌	
Evaluation Period	Weekly	-	THD, up to order [25-50]	40	
First Day of the Week	Sunday	-	Interharmonics, up to order [25-50]	25	
EN50160 Harmonics Su	irvey		Mains Signaling Volt	age	
Evaluation	Enabled	-	Evaluation	Disabled 👻	
Evaluation Period	Weekly	-	1st Signaling Frequency, Hz	183.0	
Rapid Voltage Chang	jes		2nd Signaling Frequency, Hz	191.0	
Repetition Rate, variations/hour [1-10]		1	3rd Signaling Frequency, Hz	217.0 317.0 Itage	
Flicker			4th Signaling Frequency, Hz		
Pst Period [1-10 min]		10	Transient Overvolta		
Harmonic Voltage	:		Detection and Classification Method	Peak voltage 💌	
THD, up to order [25-50]		40	,		
Harmonics, up to order [25-50]		25			

Figure 7-3 EN50160:2007 Advance Setup

EN 50160:2010 Harmonics Setup	Fault Recorder		Programmable Min/Max Log		
Log Memory Data Rec	corder EN 50	0160:2010 PQ Recorder EN 50	160:2010 Advanced Setup		
Compliance Stat	ietice	Interharmonic V	laltago		
Evaluation	Enabled V	Evaluation	Disabled		
Evaluation Period	Weekly	THD, up to order [25-50]	40		
First Day of the Week	Monday 💌				
Start Time	00:00	Interharmonics, up to order [25-50]	25		
Recording Opti	ons	Mains Signaling			
Record Flagged Data	Disabled 💌	Evaluation	Disabled		
Record Coincident Currents	Disabled 💌	1st Signaling Frequency, Hz	183.0		
Rapid Voltage Ch	anges	2nd Signaling Frequency, Hz	191.0		
Minimum Steady State Time	100/120 1/2-cyc. 💌	3rd Signaling Frequency, Hz	217.0		
Max. Repetition Rate [1-10, 0=any]	0	4th Signaling Frequency, Hz	317.0		
Evaluation Interval [1-60 min]	60	Aggregation Interval	3 s (150/180 cyc.)		
Flicker		Voltage Even	· · · -		
Pst Period [1-10 min]	10	Time Aggregation Interval, s [0-180]			
Harmonic Volt					
THD, up to order [25-50]	40	Data Monitoring (Harmonics Aggregation Interval	0.2 s (10/12 cyc.)		
Harmonics, up to order [25-50]	25	Harmonics Aggregation Interval	0.2 S (10/12 Cyc.)		
Open	Save as Default	Print Send B	eceive		

Figure 7-4 EN50160:2010 Advance Setup

The available options are listed in the following table.

Option	Range	Default	Description
EN50160 Co	mpliance Statis	tics	

Option	Range	Default	Description
Evaluation	Disabled,	Enabled	Enables the EN50160 evaluation
	Enabled	Enabled	
Evaluation Period		Weekly	Defines the EN50160 statistics evaluation period
First Day of the	Sunday-	Sunday	Defines the first day of the week for statistics evaluated
Week	Saturday		on a weekly basis
EN50160 Harmor	nics Survey		
Evaluation	Disabled, Enabled	Enabled	Enables the harmonics survey log
Evaluation Period	Daily, Weekly	Weekly	Defines the harmonics survey evaluation period
Rapid Voltage C			· · · · ·
	1-10	1	Defines the maximum repetition rate in variations per hour (equal or less than) for rapid voltage changes. Voltage changes at higher rates are not classified since they will be subject for flicker.
Flicker			
Pst Period	1-10 min	10 min	Defines the period of time for the short-term flicker evaluation. The standard setting of 10 minutes can be temporarily changed in the device for testing purposes.
Harmonic Voltag	le		
THD, up to order	25-50	40	Defines the highest harmonic order included in the THD evaluation.
Harmonics, up to order	25-50	25	Defines the highest harmonic order for evaluation of the harmonic voltages.
Interharmonic Vo	oltage		
Evaluation	Disabled, Enabled	Disabled	Enables the evaluation of the interharmonic voltages
THD, up to order	25-50	40	Defines the highest interharmonic order included in the THD evaluation.
Interharmonics,	25-50	25	Defines the highest harmonic order for evaluation of the
up to order			interharmonic voltages.
Mains Signaling	Voltage	-	
	Disabled, Enabled	Disabled	Enables the evaluation of the mains signaling voltages
1st Signaling	110-3000 Hz	183.0 Hz	Specifies the mains signaling frequency for the
Frequency			compliance evaluation
	110-3000 Hz	191.0 Hz	Specifies the mains signaling frequency for the
Frequency			compliance evaluation
3rd Signaling	110-3000 Hz	217.0 Hz	Specifies the mains signaling frequency for the
Frequency			compliance evaluation
4th Signaling Frequency	110-3000 Hz	317.0 Hz	Specifies the mains signaling frequency for the compliance evaluation

Clearing EN50160 Evaluation Counters

To clear the present contents of the EN50160 evaluation counters before starting your EN50160 evaluation, check the On-line button, select Reset from the Monitor menu, and then Click on the "Clear Operatio/Event Counters" button (for more information, see <u>Resetting Accumulators and Clearing Log Files</u>).

Configuring the Fault Recorder

The Fault recorder automatically records all fault events to the Fault log and to the Sequence-of-Events log files. It can be triggered via the embedded fault detector, or externally through any of the 48 digital inputs.

The Fault recorder can be globally disabled or enabled in your device.

The Fault recorder setup allows you to adjust thresholds and hysteresis for different fault triggers, and to define the waveform and data log options for synchronous recording during the fault events. To configure the Fault recorder:

- 1. Select Memory/Log from the Meter Setup menu, and then click on the Fault Recorder tab.
- 2. Enable fault triggers suitable for your application. Each one, except of the external digital triggers, must be individually enabled for the Fault recorder.
- 3. If you wish to change the default settings, adjust thresholds and hysteresis for your fault triggers.
- 4. Select the waveform and data logging options for fault events.

5. Download your setup to the device.

The following table lists available Fault recorder options:

Option	Range	Default	Description
Thresholds			
Threshold, %	0-200.0%		Defines the operating threshold for the fault trigger in percent of the nominal (reference) value
Threshold, secondary			Shows the setup value in secondary units for the selected operating threshold
Hysteresis, %	0-50.0%	5.0	Defines the hysteresis for fault trigger in percent of the threshold
Trigger Enabled	Checked Unchecked	Checked	Links the fault trigger to the Fault Recorder. If the box is eaved unchecked, the Fault Recorder does not respond to the trigger.
Waveform Log			
On Start	Checked Unchecked	Checked	Enables waveform log when the fault event starts
On End	Checked Unchecked	Unchecked	Enables waveform log when the fault event ends
Log No.	1-8	7	Specifies the waveform log file used for waveform recording on the fault event
1/2-cycle RMS P	lot		
Log Enabled	Checked Unchecked	Unchecked	Enables concurrent RMS trace plot to the data log file while the fault event continues
Max. Duration	0-10,000 cycles	100	Maximum duration of the 1/2-cycle data trend log. The ogging is stopped automatically when either a fault event ends or the specified number of cycles has been recorded.
Before, Cycles	0-20 cycles	4	The number of cycles to be recorded prior to the event
After, Cycles	0-20 cycles	4	The number of cycles to be recorded after the event
Log No.	13	13	Specifies the data log file used for data recording on the fault event

To enable or disable the Fault recorder in your device:

- 1. Check or uncheck the "Recorder Enabled" checkbox.
- 2. Send the new setting to the device.

In IEEE 1159 versions, current and voltage faults detected by the Fault recorder are normally recorded into the IEEE 1159 Power Quality log file. To disable this option:

- 1. Uncheck the "Record to PQ Log" checkbox.
- 2. Send the new setting to the device.

Configuring Analog Triggers

Voltage and current thresholds are normally specified as a percent of a nominal (reference) voltage and current. The voltage reference is the line-to-neutral PT secondary voltage for the 4LN3, 3LN3 and 3BLN3 wiring configurations, and the line-to-line PT secondary voltage for other wiring configurations. The reference value for current triggers is the CT secondary current rating for the extended range current inputs. See <u>Basic Device Setup</u> in Chapter 6 for information on specifying voltage and current ratings in your device.

To make easier specifying thresholds for voltage and current triggers, PAS also shows you threshold values in secondary units that match the percentage you selected for the triggers. To update the thresholds in secondary units, type the threshold for a trigger in percent, and then press Enter or click elsewhere on the Fault Recorder setup tab.

The picture above shows the factory set Fault recorder options. Notice that the Overcurrent trigger can be used along with the second Undervoltage trigger combined by logical AND. If you wish to use the only Overcurrent trigger, disable (uncheck) the second Undervoltage trigger.

The **Zero-Sequence Voltage** trigger and the **Voltage Unbalance** trigger are disabled by default. Both are very sensitive to phase unbalances. If you want to use them, adjust the thresholds according to your network conditions before enabling triggers.

The **Current Unbalance** trigger has a different calculation algorithm than the common current unbalance measurements. Since the unbalance readings give a relation of the maximum deviation from the average to the phase average current, the value could produce high readings for low currents and may not be used as a fault trigger. The Current Unbalance trigger used with the Fault recorder shows a relation to the CT rated current instead of the three-phase average and is not sensitive to low currents.

Configuring Digital Triggers

If you use external triggering of the Fault recorder through digital inputs, you should individually link each digital input to the Fault recorder (see <u>Configuring Digital Inputs</u> in Chapter 6). The external triggering is enabled for the Fault recorder by default and cannot be disabled by the user.

Fault Indication and Cross Triggering

When the Fault recorder is triggered either by the fault detector or through digital inputs, it generates a number of specific internal events that can be monitored through the control setpoints to give a fault indication via relay contacts. The following describes fault events produced by the Fault recorder:

- 1. FAULT DETECTED the fault detector has detected a fault event using the device's own measurements
- 2. EXTERNAL TRIGGER the Fault recorder has been launched by an external trigger through one of the digital inputs
- FAULT EVENT the Fault recorder has been launched either by its own fault detector, or by an external trigger

These events can be found under the STATIC EVENTS group in the setpoint trigger list (STATIC in this context means that an event is asserted all the time while its fault condition exists).

The FAULT DETECTED event can be effectively used for cross triggering multiple fault recorders to simultaneously record fault data at different locations when one of the devices detects a fault. Each device should have a setpoint programmed to close relay contacts on the FAULT DETECTED event, and one digital input linked to the Fault recorder.

To provide cross triggering, the triggering digital inputs of all devices should be tied together and connected to the normally opened relay contacts that indicate a fault. To avoid self-triggering through its own digital input for the device that indicates a fault, it is recommended to use a Form C relay and to connect the digital input through the normally closed contacts. Thus, the device that indicates a fault disconnects its digital input before giving a fault out.

Configuring the Fault Locator

This section describes the predefined parameters while installing the IED.

- Sites parameters:
- Name of Substation where locator is installed
- Name of the Power Line
- Line type (Single, parallel, party parallel, branch with transformer)
- Using of Current input I4 (not used, own neutral current, neutral current of parallel line)
- Length of the power line
- Length of the parallel line
- Digital input number of the locator, used for connection to relay protection output
- Digital input number of the locator, used for connection to circuit breaker block-contact
- Number parts of power line having different impedances of 1 km (up to 4 parts)

	Station					Line Impe	dance			
Station Name	Substation	Substation 1			Number of Segments			4		Setup
	Line			Capacitance pe	r km, F/(km*	10^-4)				
Line Name	220kV Lin	e Haifa - Hadera		Parallel Line Mu	Parallel Line Mutual Reactance, Ohm/km					
Line Type	Single		•			Transformer	on Branch			
Current Input Not used			-	Line to branch a	& Power sys	stem impedance, Ohi	n			Setup
Power Line Length, km	ower Line Length, km 60.00			Instrument Transformer Correction						
Parallel Line Length, km				Current Transfe	ormer Correc	ction, No. of Ranges	6		-	Setup
	External Trig	External Triggers		Voltage Transformer Correction, No. of Ranges			4		-	Setup
Protection Relay	NONE		-							
Breaker Contacts	NONE		-	Correctio	on Enable	d				
	·									
	Open	Save as	Default	Pri	1	Send	Receive	1		

- Impedance of 1 km power line for each part of line (up to 4 groups):
- Positive sequence resistance, Ohm/km,
- Positive sequence reactance, Ohm/km,
- Zero sequence resistance, Ohm/km,
- Zero sequence reactance, Ohm/km
- Capacitance of 1 km line , Ohm/km
- Impedance of 1 km parallel line
- Mutual reactance, Ohm/km.
- Data of line branch with power transformer
- Power line impedance up to branch
 - Zero sequence resistance, Ohm
 - Zero sequence reactance, Ohm
- Power system impedance
 - Zero sequence resistance, Ohm
 - Zero sequence reactance, Ohm
- Power transformer impedance
 - Zero sequence resistance, Ohm
 - Zero sequence reactance, Ohm

			Power Line Impedance	e	
No.	Segment Length, km	Pos. Sequence Resistance, Ohm/km	Pos. Sequence Reactance, Ohm/km	Zero Sequence Resistance, Ohm/km	Zero Sequence Reactance, Ohm/km
1	100.00	0.2500	0.2500	0.5000	2.5000
2	100.00	0.2500	0.2500	0.5000	2.5000
3	100.00	0.2500	0.2500	0.5000	2.5000
4	100.00	0.2500	0.2500	0.5000	2.5000

 Data for correction of current transformer errors, number of parts current error characteristic (up to 6)

Correction coefficients:

- for current 0 to 50% In r.m.s. x1,%, angle y1, min
- for current 50 to 150% r.m.s. x2,%, angle y2, min
- for current 150 to 400% r.m.s. x3,%, angle y3, min

- for current 400 to 1000% r.m.s. x4,%, angle y4, min
- for current 1000 to 2000% r.m.s. x5,%, angle y5, min
- for current 2000 to 3000% r.m.s. x5,%, angle y6, min

	C	Current Transformer Correction	
No.	Upper Test Point, Im/In	Ratio Correction Factor	Phase Angle Error, min
1	5.0	1.000	0
2	9.0	1.000	0
3	13.0	1.000	0
4	16.0	1.000	0
5	18.0	1.000	0
6	20.0	1.000	0

 Data for correction of voltage transformer errors, number of parts voltage error characteristic (up to 4)

Correction coefficients:

- for voltage 0 to 10% Vn r.m.s. x1,%, angle y1, min
- for voltage 10 to 25% r.m.s. x2,%, angle y2, min
- For voltage 25 to 50% r.m.s. x3,%, angle y3, min
- for voltage 50 to 110% r.m.s. x4,%, angle y4, min

		Voltage Transformer (Correction	
No.	Upper Test Point, Um/Un	Ratio Correc Factor	ction	Phase Angle Error, min
1	0.10	1.000	0	
2	0.25	1.000	0	
3	0.50	1.000	0	
4	1.10	1.000	0	

- Fault voltage and current r.m.s. of own end of power line (for three phases and neutral) for each cycle with time stamp and update a half cycle (up to 32 cycles)
- Data about opposite end of the power line
 - Name of Substation where second locator is installed
 - Address of the second locator
- Fault voltage and current r.m.s. (for three phases and neutral) for each cycle with time stamp and update a half cycle

Fault Location calculations results

- Definitions
 - Names of faulted phases (AG, BG, CG, AB, BC, CA, ABG, BCG, CAG, ABC and Broken phase line A or B or C)
 - Distance to fault [km] or [miles]
 - Duration of fault [sec], from 0.02s to 20s with 0.01s resolution
- Fault Parameters names:
 - FITm: Fault Time
 - FltTmmcs:
 - FltLoop: Fault Loop
 - FltDis: Fault Distance in km or miles
 - FltAcc%: Fault accuracy in %
 - FltR: Fault Resistive value
 - FltX: Fault complex value

Set the Distance to Fault Log Enabled flag.

		g Setup		,									
	Log N	Memory EN50160 H	Data Re armonics Setup	I	Waveform F	Recorder Fault Reco		EN50160 P	Q Reco		1	50160 Advanced Min/Max Log	d Setup
						Fault Trigg	jers						
Fault Event		Trigger #1	Threshold, %	Threshold, secondary	Hysteresis, %	Trigger Enabled	Trigg	er #2	Thresh %		Threshold, secondary	Hysteresis, %	Trigger Enabled
DI	Exterr	nal Trigger				V							
FE1	Zero-	Seq. Current	5.0	0 0.25 A	5.0								
FE2	Zero-	Seq. Voltage	5.0) 11.5 V	5.0								
FE3	Curre	nt Unbalance	5.0)	5.0								
FE4	Voltag	ge Unbalance	5.0	-	5.0								
FE5	Overo	current	20.0		5.0		Undervoltag	le		97.0	224.0 V	5.0	
FE6	Under	voltage	94.0) 217.1 V	5.0	•							
FE7	l4 (ne	utral) Current	5.0	0 0.25 A	5.0								
						Fault Recor	rding						
		Waveform Log				1/2-cycle	RMS Trend					Distance to F	ault
Log Sta		Log on End	Log No.	Log Enabled	Max. Duration, cycles		efore, sycles	After		Data L No.		Log Enabled	Data Log No.
V	1		7 💌			100	4 💌	4	•	13			1
▼ 		order Enabled ord to PQ Log)pen	Save as	Defau	lt	Print		Send	±	Receive	
								ок		Canc	el	Apply	Help

Set Data Log #1 with Distance to Fault parameters to retrieve them remotely.

lemory	50160 Harmonic D	s Setup ata Recorder		Waveform		tRecorder der	EN50160 PQ F	Recorder	Progra	mmable Min/Max L EN50160 Adva	-
1		ame: istance to Fault	data log								
					Data Lo	og Parameter	s				
No.	Gro	oup		Parameter		No.	Group			Parameter	-
1	RMS (1 min)	•	V1		•	9	Distance to Fault	•	FItR		-
2	RMS (1 min)	-	V2		-	10	Distance to Fault	•	FItX		•
3	RMS (1 min)	•	V3		•	11		•	NONE		
4	Distance to Fault	-	FITTm		-	12		-	NONE		
5	Distance to Fault	-	FItTmmcs		-	13		-	NONE		
6	Distance to Fault	•	FitLoop		•	14		•	NONE		
7	Distance to Fault	-	FItDis		-	15		•	NONE		
8	Distance to Fault	•	FitAcc%		•	16		•	NONE		
	Distance to Fault		FitAcc%			16			NONE		
	Open	Save as.		Clear	((Clear All	Print	Ser	nd	Receive	

Chapter 8 Totalization Energy and TOU Registers

The PM180 provides 16 summary energy registers and 16 parallel TOU energy and maximum demand registers to link to any internal energy source or to any external pulse source that delivers energy pulses through the device digital inputs.

A total of 64 energy sources can be connected to the summary and TOU registers. Each summary register can accumulate energies from multiple sources using arithmetic addition and subtraction. A summary register may be linked to another summary register to provide more comprehensive energy calculations.

The TOU system provides for each TOU energy register a parallel maximum demand register that is updated automatically when a corresponding TOU register is activated. The device supports 16 different tariffs using an arbitrary tariff structure.

The PM180 TOU system technique is based on the currently active TOU annual calendar that assigns the user-selectable daily profile to each day of the year. The TOU daily profiles specify daily tariff change points. The PM180 memory stores calendars for 10 years. A total of 16 types of days are supported with up to eight tariff changes per day.

By default, the summary registers in your device are not linked to energy sources and are not operational. To activate a summary energy register, link it to the energy source(s).

To activate TOU system:

- 1. Configure the TOU daily profiles for different types of days.
- 2. Configure the TOU calendars.
- 3. Link the TOU registers to the corresponding summary energy registers that are used as source registers for TOU system.

Configuring Summary and Billing/TOU Registers

To configure the device summary and Billing/TOU registers, select Energy/TOU from the Meter Setup menu.

		Billing	j/TOU Regist	ers				Reg	ister	Source List		
Reg.	TOU	Use Profile	Dmd Profile	Sum Profile	Units		No.	Source Input		Multiplier	Target	
1	•	>	>	>	ki/vh	•	1	k/Wh IMPORT	•	1.000	Reg #1	•
2	~	~	~	~	kvarh	-	2	kvarh IMPORT	-	1.000	Reg #2	-
3	•	~	~	~	ki/Vh	•	3	k/Wh IMPORT	-	1.000	Reg #3	•
4	•	V	v	~	kvarh	-	4	kvarh EXPORT	-	1.000	Reg #4	-
5	•		~		m3	•	5	DI1	•	200	Reg #5	•
6	•		v		CF	-	6	DI2	-	200	Reg #5	-
7	•		v			•	7	SUMM REG #1	-	1.000	Reg #6	•
8	•		~			•	8	SUMM REG #2	•	1.000	Reg #6	-
9						•	9		-			
10						•	10		•			
11						-	11		-			
12						•	12		•			
13						-	13		-			
14						-	14		•			
15						-	15		•			
16						-	16		-			
		Open	Save	as	Default		Prir	nt Se	end	Rec	eive	

The available options are described in the following table:

Parameter	Options	Default	Description
		Billing/TOU	Registers
TOU	Unchecked Checked	Unchecked	Links multi-tariff registers to the selected energy source
Use Profile	Unchecked Checked	Unchecked	Enables recording energy registers in monthly/daily billing profile files (both total and tariff registers if TOU is enabled).

Parameter	Options	Default	Description
Dmd Profile	Unchecked Checked	Unchecked	Enables recording maximum demand registers in monthly/daily billing profile files (both total and tariff registers if TOU is enabled)
Sum Profile	Unchecked Checked	Unchecked	Enables recording total (summary) registers in monthly/daily billing profile files.
Units	None kWh kvarh kVAh m3 CF CCF	None	The energy register measurement unit.
		Register So	urce List
Source Input	None KWh IMPORT KWh EXPORT kvarh IMPORT kvarh Q1 kvarh Q2 kvarh Q3 kvarh Q4 kVAh kVAh IMPORT kVAh EXPORT DI1-DI48 SUMM REG #1 - 16	None	Links an internal or external energy source to the billing register.
Multiplier	0.001 to 100.000	1.000	The multiplication factor for the energy source.
Target	Reg#1- Reg#10	None	Defines the target summary register for the energy source.

Configuring TOU Daily Profiles

To configure the TOU daily profiles, select Energy/TOU from the Meter Setup menu, and then click on the TOU Daily Profiles tab.

lling/TOU Registers	TOU Daily Pro	ofiles TOU Calendar						
		Daily Tarifi	f Profile		1			
		Season		ay Type	1			
	#1		* #1		1	Open		
	No.	Tariff Start Time	Т	ariff No.	1	Save as	1	
	1	00:00	#1	•]	Clear	1	
	2	-	#2	-				
	3		* #3	•		Clear All		
	4		* #1	-]	Print		
	5		- #1	-	-1	Send	1	
	6		* #1	-	1		4	
	7		* #1	-		Receive		
	8	00:00	- #1	-			_	

The profile setup allows you to specify the daily tariff change points with a 15-minute resolution. To configure your daily profiles:

- 1. Select the desired season and day type
- 2. Select the start time for each tariff change point and the corresponding active tariff number.
- 3. Repeat the setup for all seasons and types of day.

The first tariff change point is fixed at 00:00 hours, and the last tariff change you specified will be in use until 00:00 hours on the next day.

Note: The billing monthly and daily profile files, and your billing data display are automatically configured for the number of active tariffs you defined in the meter TOU daily profile

Configuring TOU Calendar

The Pm180 TOU calendar provides a season tariff schedule and an option for scheduled daylight savings switch dates.

To configure your season tariff schedule, select Energy/TOU from the Meter Setup menu, and then click on the TOU Calendar tab.

									TOU Calen	da	r								
No.	Seaso Perio		Da Typ		Week of Month		Weekday		Till Weekday		Month		Day	Till Month		Till Day	,	Year	-
1	#1	•	#1	•	First	•	Sunday	•	Saturday	•	January	•	1 💌	March	•	31	•	2013	-
2	#2	•	#1	¥	First	•	Sunday	•	Saturday	•	April	•	1 💌	June	•	30	•	2013	•
3	#3	•	#1	•	First	•	Sunday	•	Saturday	•	July	•	1 💌	September	•	30	•	2013	-
4	DST	•									April	•	1 💌	October	•	30	•	2013	•
5		•																	
6		•																	
7		•																	
8		•								_									
9		•								_									
10		•								_		_							
11		•								_		_							
12		•																	
13		•				_		_		_		_							
14		•																	
		•				_		_		_		_							
16		•																	
15 16		-		pen		5a									Rec				

The meter TOU calendar allows you to configure any tariff schedule based on any possible utility regulation. The calendar provides 48 entries that allow you to specify profiles for working days and holidays through all seasons in any order that is convenient for you, based on simple intuitive rules. There are no limitations on how to define your schedule. The meter is able to automatically recognize your settings and to select a proper daily tariff schedule for any day within a year.

To configure your season tariff schedule:

- 1. In the "Season/Period" box, select the season, and in the "Day Type" box, select a day type for this calendar entry.
- Select the time interval when this daily tariff schedule is effective, based on the start and the end weekdays and, for a multi-season schedule, on the start and the end month for the selected season. It does not matter which order of weekdays or months you select: the meter recognizes the correct order.
- 3. For exception days like designated holidays, select a specific day either by specifying a day and month, or by selecting a month, a week and a weekday within the month.

NOTE: The PM180 TOU calendar provides an embedded schedule of Hebrew holidays till 2039 for Israeli customers. To enable the automatic holiday schedule, select Israel in the Country box in the Local Settings setup (see Local Settings)

To configure your DST schedule:

- 1. Select DST in the "Season/Period" box.
- 2. Select the DST start month and day in the "Month" and "Day" boxes.
- Select the DST end month and day in the "Till Month" and "Till Day" boxes.
- 4. In the "Year" box, select a year for which these dates will be effective.
- 5. Repeat steps 2-4 for all years for which you wish to provide a DST schedule.

To make your DST schedule effective:

1. Go to the Local Settings setup (see Local Settings).

- 2. Select "Scheduled" in the Daylight Saving Time (DST) box.
- 3. Send your new setting to the meter.

Chapter 9 Configuring Communication Protocols

This section describes how to customize protocol options for use with your application software.

Configuring MODBUS

MODBUS Point Mapping

The PM180 provides 120 user assignable registers in the address range of 0 to 119. You can remap any register available in the device to any assignable register so that Modbus registers that reside at different locations may be simply accessed using a single request by re-mapping them to adjacent addresses.

Initially these registers are reserved and none of them points to an actual data register. To build your own MODBUS register map:

- 1. From the Meter Setup menu select Protocol Setup and click on the MODBUS Registers tab.
- Click on the Default button to cause the assignable registers to reference the actual default device register 11776 (0 through 119 are not allowable register addresses for re-mapping).
- Type in the actual addresses you want to read from or write to via the assignable registers. Refer to the PM180 MODBUS Reference Guide for a list of the available registers. Note that 32-bit MODBUS registers should always start at an even register address.

	8 <mark>8 – Proto</mark> s Register:) DNF	Event Se	tpoints	DNP C	lass O	Points			
	_	_	_	As	signable	Regi	sters		_	_		Modbus Options
Reg	Addr.	Reg	Addr.	Reg	Addr.	Reg	Addr.	Reg	Addr.	Reg	Addr.	Raw Scale Low 0
	[dec]		[dec]		[dec]		[dec]		[dec]		[dec]	Raw Scale High 9999
0	14336	20	3088	40	3120	60	11776	80	11776	100	11776	32-bit Analog Reg Integer
1	14337	21	3089	41	3121	61	11776	81	11776	101	11776	32-bit Counters Integer
2	14720	22	3090	42	44378	62	11776	82	11776	102	11776	32-bit Energy Reg Integer
3	14721	23	3091	43	44379	63	11776	83	11776	103	11776	,
4	14728	24	3092	44	56192	64	11776	84	11776	104	11776	
5	14729	25	3093	45	56193	65	11776	85	11776	105	11776	
6	19584	26	3096	46	56194	66	11776	86	11776	106	11776	
7	19585	27	3097	47	56195	67	11776	87	11776	107	11776	
8	19586	28	3102	48	56196	68	11776	88	11776	108	11776	
9	19587	29	3103	49	56197	69	11776	89	11776	109	11776	
10	11776	30	3104	50	56452	70	11776	90	11776	110	11776	<u>O</u> pen
11	11776	31	3105	51	56453	71	11776	91	11776	111	11776	Save as
12	11776	32	3106	52	56454	72	11776	92	11776	112	11776	
13	11776	33	3107	53	56455	73	11776	93	11776	113	11776	<u>D</u> efault
14	11776	34	3110	54	56456	74	11776	94	11776	114	11776	Print
15	11776	35	3111	55	56457	75	11776	95	11776	115	11776	
16	11776	36	3116	56	44378	76	11776	96	11776	116	11776	Send
17	3076	37	3117	57	44379	77	11776	97	11776	117	11776	Receive
18	3082	38	3118	58	11776	78	11776	98	11776	118	11776	
19	3083	39	3119	59	11776	79	11776	99	11776	119	11776	
										ОК	Ca	ancel Apply Help

4. Click Send to download your setup to the device.

Changing Raw Scales for 16-bit Registers

16-bit analog registers are normally read with scaling to the default range of 0 to 9999. Refer to the PM180 MODBUS Reference Guide for more information on scaling 16-bit MODBUS registers.

To change the default low and high raw scales:

- 1. From the Meter Setup menu select Protocol Setup and click on the Modbus Registers tab.
- 2. Change the raw scales in the Modbus Options pane. The allowable range is 0 to 65535.
- 3. Click Send to download your setup to the device.

Configuring DNP3

DNP Options can be changed both via DNP3 and Modbus. Refer to the PM180 DNP3 Reference guide for information on the protocol implementation and a list of the available data points.

DNP Options

From the Meter Setup menu select Protocol Setup and click on the DNP Options tab.

Binary Inputs (BI)			DNP General Opt	ions
Number of BI to generate events	21	-	16-bit Al Scaling	Enabled 💌
Default Binary Input Object	Single-bit	-	16-bit BC Scaling	x1 💌
Binary Input Change Event Object	vVith Time	-	Re-mapping Event Points	Disabled 💌
	·		SBO Timeout, s	10
Analog Inputs (Al)			Time Sync Period, s	86400
Number of Al to generate events	43	•	Multi Fragment Interval, ms	50
Default Analog Input Object	16-bit -Flag	-	,	
Analog Input Change Event Object	16-bit +Time	-		
Default Frozen Analog Input Object	N/A			
Frozen Analog Change Event Object	N/A			
Binary Counters (BC	.)			
Number of BC to generate events	0			
Default Binary Counter Object	32-bit -Flag	-		
Binary Counter Change Event Object	32-bit +Time	-		
Default Frozen Binary Counter Object	32-bit -Flag	-		
	N/A			

The following table describes available DNP options. Refer to the DNP3 Data Object Library document available from the DNP User's Group on the DNP3 object types.

Parameter	Options	Default	Description
Binary Inputs (B	l)		
Number of BI to	0-64 ³	21	The total number of BI change event
Generate events			points for monitoring
Binary Input	Single-bit	Single-bit	The default BI object variation for
Object	With Status		requests with qualifier code 06 when no
			specific variation is requested
	Without Time	With Time	The default BI change event object
	With Time		variation for requests with qualifier code
Object			06 when no specific variation is requested
Analog Inputs (A		-	
Number of AI to	0-64 ³	43	The total number of AI change event
Generate events			points for monitoring
Analog Input	32-bit	16-bit -Flag	The default AI object variation for
Object	32-bit –Flag		requests with qualifier code 06 when no
	16-bit		specific variation is requested
	16-bit –Flag		
Analog Input	32-bit -Time	16-bit +Time	The default AI change event object
Change Event	32-bit +Time		variation for requests with qualifier code
Object	16-bit -Time		06 when no specific variation is requested
	16-bit +Time		
Binary Counters	<u>, ,</u>		-
	0-64 ³	0	The total number of BC change event
Generate events			points for monitoring
Binary Counter	32-bit +Flag	32-bit -Flag	The default BC object variation for
Object	32-bit –Flag		requests with qualifier code 06 when no
	16-bit +Flag		specific variation is requested
	16-bit –Flag		

Parameter	Options	Default	Description
Binary Counter	32-bit -Time	32-bit +Time	The default BC change event object
Change Event	32-bit +Time		variation for requests with qualifier code
Object	16-bit -Time		06 when no specific variation is requested
	16-bit +Time		
Frozen Binary	32-bit +Flag	32-bit -Flag	The default frozen BC object variation for
Counter Object	32-bit –Flag		requests with qualifier code 06 when no
	32-bit +Time		specific variation is requested
	16-bit +Flag		
	16-bit –Flag		
	16-bit +Time		
DNP General Op	tions		
16-bit AI Scaling	Disabled	Enabled	Allows scaling 16-bit analog input objects
	Enabled		(see description below)
16-bit BC Scaling	x1, x10, x100,	x1	Allows scaling 16-bit binary counter
	x1000		objects (see description below)
Re-mapping	Disabled	Disabled	Allows re-mapping event points starting
Event Points	Enabled		with point 0.
SBO Timeout ¹	2-30 sec	10	Defines the Select Before Operate (SBO)
			timeout when using the Control-Relay-
			Output-Block object
Time Sync Period	0-86400 sec	86400	Defines the time interval between periodic
2			time synchronization requests
Multi Fragment	50-500 ms	50	Defines the time interval between
Interval			fragments of the response message
			when it is fragmented

¹ The Select Before Operate command causes the device to start a timer. The following Operate command must be sent before the specified timeout value expires.

² The device requests time synchronization by bit 4 in the first octet of the internal indication word being set to 1 when the time interval specified by the Time Sync Period elapses. The master should synchronize the time in the device by sending the Time and Date object to clear this bit. The device does not send time synchronization requests if the Time Sync Period is set to 0.

³ The total number of AI, BI and BC change event points may not exceed 64. When you change the number of the change event points in the device, all event setpoints are set to defaults (see Configuring DNP Event Classes below).

Scaling 16-bit AI objects

Scaling 16-bit Al objects allows accommodating native 32-bit analog input readings to 16-bit object format; otherwise it may cause an over-range error if the full-range value exceeds a 16-bit point limit.

Scaling is enabled by default. It is not applied to points that are read using 32-bit AI objects.

Refer to the PM180 DNP3 Reference Guide for information on the data point scales and on a reverse conversion that should be applied to the received scaled values.

Scaling 16-bit Binary Counters

Scaling 16-bit Binary Counters allows changing a counter unit in powers of 10 to accommodate a 32-bit counter value to 16-bit BC object format.

If the scaling unit is greater than 1, the counter value is reported being divided by the selected scaling unit from 10 to 1000. To get the actual value, multiply the counter reading by the scaling unit.

Configuring DNP Class 0

The most common method of getting static object information from the device via DNP is to issue a read Class 0 request. The PM180 allows you to configure the Class 0 response by assigning ranges of points to be polled via Class 0 requests.

To view the factory-set DNP Class 0 assignments or build your own Class 0 response message:

- 1. From the Meter Setup menu select Protocol Setup and click on the DNP Class 0 Points tab
- 2. Select the object and variation type for a point range.
- 3. Specify the start point index and the number of points in the range. Refer to the PM180 DNP3 Reference Guide for available data points.

- 4. Repeat these steps for all point ranges you want to be included into the Class 0 response.
- 5. Click Send to download your setup to the device.

The factory-set Class 0 point ranges are shown in the picture below.

No. Object [Object: Variation] Start Point Number of Points 1 AI 30:04 (16-bit.F) 0 32 2 AO 40:02 (16-bit) 0 9 3 BI 01:01 (1-bit) 64 32 4 BI 01:01 (1-bit) 0 16 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - -		DNP Class 0	Poir				
2 AO 40.02 (16-bit) • 0 9 3 BI 01:01 (1-bit) • 64 32 4 BI 01:01 (1-bit) • 0 16 5 • - - 6 • - - 7 • - - 8 • - - 9 • - - 10 • - - 11 • - -	No.					\vdash	
3 BI 01:01 (1-bit) • 64 32 4 BI 01:01 (1-bit) • 0 16 5 • - - 6 • - - 7 • - - 8 • - - 9 • - - 10 • - - 11 • - -	1	Al 30:04 (16-bit-F)	-	0	32		
4 BI 01:01 (1-bit) • 0 16 5 - - 6 • - 7 • - 8 • - 9 • - 10 • - 11 • -	2	AO 40:02 (16-bit)	-	0	9		
5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - -	3		-	64			
6 - - 7 - - 8 - - 9 - - 10 - - 11 - -	4	BI 01:01 (1-bit)	•	0	16		
7 - 8 - 9 - 10 - 11 -	5		•	-	-		
8 - 9 - 10 - 11 -	6			-	-		
9 · - 10 · - 11 · -	7		_	-	-		
10 · 11 · -	-		_	-	-		
11			_	-	-		
			_	-	-		
12			_	-	-		
	12		•	-	-		
13	13		_	-	-		
14	14		•	-	-	-	

Configuring DNP Event Classes

The PM180 generates object change events for any static analog input, binary input, and binary counter point when a corresponding point either exceeds a predefined threshold, or the point status changes. A total of 64 change event points are available for monitoring.

Object change events are normally polled via DNP Class 1, Class 2 or Class 3 requests. You can link any change event point to any event class upon the event priority. Refer to the PM180 DNP3 Reference Guide for more information on polling event classes via DNP.

A change event point index is normally the same as for the corresponding static object point. To use independent numeration for event points, enable re-mapping event point indices via DNP Options setup (see above) so they start with index 0.

Define a separate event setpoints for each static object point to be monitored for change events. To view or change the factory-set DNP event setpoints, select Protocol Setup from the Meter Setup menu and click on the DNP Event Setpoints tab.

A	nalog Input	s (AI) 12	÷. V	Binary Inputs	(BI)	12 🚊 Binary C	Co	unters (BC)	0 ÷	Eve	nt Maj	oping	¢	
_			_		D	IP Event Setpoints	-			_	_	_		
Vo.	Event Point	Static Point	Ext	Group		Parameter	Ι	Relation	Threshold/ Deadband	Ev On	Log On	E' Cla		
1	AI:0	AI:0		AVR PHASE	-	٧1 💌	•	< 💌	110	V		#1	-	
2	AI:1	AI:1		AVR PHASE	-	V2 •	•	< 💌	110			#1	-	
3	AI:2	AI:2		AVR PHASE	-	V3 💌	-	< 💌	110	V		#1	-	
4	AI:3	AI:3		AVR PHASE	-	I1 💌	-	> 💌	25			#1	-	
5	AI:4	AI:4		AVR PHASE	-	I2 💌	-	> 💌	25	V		#1	-	
6	AI:5	AI:5		AVR PHASE	-	13 💌	-	> 💌	25	V		#1	-	
7	AI:6	AI:22		AVR AUX	-	In 💌	-	Delta 💌	0.00	V		#1	-	
8	AI:7	AI:23		AVR AUX	•	FREQ 💌	•	Delta 💌	0.50	V		#1	-	
9	AI:8	AI:8		AVR PHASE	•	kW L3 💌	1	Delta 💌	0.000	V		#1	•	
10	AI:9	AI:47872	V	ANALOG INPS	•	AI1 💌	1	> 💌	250	V		#1	•	
11	AI:10	AI:47872	•	ANALOG INPS	•	AI1 💌	1	> 💌	250	V		#1	•	
12	AI:11	AI:47872	V	ANALOG INPS	•	AI1 💌	1	> 💌	250	V		#1	•	
13	BI:0	BI:64		DIGITAL INPS	•	DI1 💌	1	Delta	0	V		#2	•	
14	BI:1	BI:65		DIGITAL INPS	•	DI2	1	Delta	0	V		#2	•	
15	BI:2	BI:66		DIGITAL INPS	•	DI3 💌	•	Delta	0	V		#2	•	-
		Oper	n	Save as		Default Print	1	Send	Receiv	/e				

The number of event setpoints for each static object type is specified via the <u>DNP Options</u> setup. Note: The device clears all event buffers and links the default set of static points to each event object type every time you change the number of points for any of the objects.

To define setpoints for selected static points:

- Check the "Ext" box if you wish to use the extended point list.
- 2. Select a parameter group and then a desired parameter for each event point.
- 3. For AI and BC points, select a relation and an operating threshold or a deadband to be used for detecting events. All thresholds are specified in primary units. The following relations are available:

Delta - a new event is generated when the absolute value of the difference between the last reported point value and its current value exceeds the specified deadband value;

More than (over) - a new event is generated when the point value rises over the specified threshold, and then when it returns below the threshold minus a predefined return hysteresis - applicable for Al objects;

Less than (under) - a new event is generated when the point value drops below the specified threshold, and then when it returns above the threshold plus a predefined return hysteresis - applicable for Al objects.

Hysteresis for the return threshold is 0.05 Hz for frequency and 2% of the operating threshold for all other points.

- 4. Check the "Ev On" box for the points you wish to be included into event poll reports.
- 5. In the "Ev Class" box, select the event poll class for the change event points.
- 6. Repeat these steps for all points you want to be monitored for events.
- 7. Click Send to download your setup to the device.

Configuring IEC 60870-5

The PM180 protocol stack is implemented in a very flexible manner. Most of IEC 60870-5-101/104 protocol features are user-configurable allowing easy adaptation for use in different IEC 60870-5 installations. To keep maximum interoperability with master RTU and SCADA systems, the PM180 supports all standard ASDU types for data interrogation, event reporting and control.

The support PAS configuration software supplied with the meter provides all necessary tools for remote configuration of the meter via serial ports or via a TCP/IP Internet connection using either IEC 60870-5-101/104, or Modbus protocol.

For more information see PM180 IEC 60870-5 communication guide.

Configuring IEC 60870-5 Options

To configure the IEC 60870-5 options:

1. Select IEC 60870-5 Setup from the Meter Setup menu.

General IE	C 60870-5 Options		70-5 Information Objects					
Maximum frame length, octets	255	Measured value mapped address	1					
Link address	One octet	Measured value default type	M_ME_NB_1					
Cause of transmission	One octet	Measured value event type	M_ME_TE_1 (CP56Time2a)					
Common address of ASDU	One octet	Single point mapped address	101					
Information object address (IOA)	Two octets	Single point default type	M_SP_NA_1					
SBO Timeout, s	10	Single point event type	M_SP_TB_1 (CP56Time2a)					
Short pulse duration, ms	500	Double point mapped address	201					
Long pulse duration, ms	1000	Double point default type	M_DP_NA_1					
Time sync period, s	0	Double point event type	M_DP_TB_1 (CP56Time2a)					
Local counter freeze period, min	0	Integrated totals mapped address	301					
Respond with class 1 data to class 2	Disabled	Integrated totals default type	M_IT_NA_1					
	0-5-104 Options	Integrated totals event type	M_IT_TB_1 (CP56Time2a)					
Maximum unacknowledged ASDU	12		leasurement Units					
Cyclic transmission period, ms	0	Voltage Units	V					
Redundant connection IP address #1	0.0.0.0	Current Units	A					
Redundant connection IP address #2	0.0.0.0	Power Units	kW					
Open Save as Default Print Send Receive								

- 2. Select desired options.
- 3. Click Save as... to store your setup in the device site database, and click Send to send the setup to the device

See the following table for available options.

Parameter	Options	Default	Description
General IEC 60870-5 Options			-
Maximum frame length	32-255 octets	255	The maximum length of the transmission frame. In IEC 60870-5-104 it is fixed to 253 octets.
Link address	1-2 octets	1	Link address length
Cause of transmission	1-2 octets	1	Cause of transmission length. In IEC 60870-5-104 it is fixed to 2 octets.
Common address of ASDU	1-2 octets	1	Length of common address of ASDU. In IEC 60870-5-104 it is fixed to 2 octets.
Information object address	1-3 octets	2	Length of information object address In IEC 60870-5-104 it is fixed to 3 octets.
SBO Timeout, s	0-30 s	10	Select-before-operate (SBO) timeout for single point commands with a select qualifier
Short pulse duration, ms	100-3000 ms	500	Short pulse duration for single point commands with a short pulse qualifier

Parameter	Options	Default	Description
Long pulse duration, ms	100-3000 ms	1000	Long pulse duration for single point commands with a long pulse qualifier
Time sync period, s	1-86400 s, 0=not active	0	The time interval between periodic time synchronization requests
Local counter freeze period, min	1-60 min, 0=not active	0	The period of local counter freeze and spontaneous transmission of integrated totals
Respond with class 1 data to class 2	0=disabled, Disabled 1=enabled		If enabled, the meter will respond with class 1 data to class 2 requests when there is no class 2 data in transmission
IEC 60870-5-104 Options			
Maximum unacknowledged ASDU	1-32, 0=unlimited	12	The maximum number of unacknowledged ASDU allowed before suspending data transmission. Unlimited when set to 0.
Cyclic transmission period, ms	100-30000 ms, 0=not active	0	The period of cyclic/periodic data transmission via the IEC 60870-5-104 port
Client IP for cyclic transmission	0.0.0.0 =not active	0.0.0.0	The IP address of the controlling station for cyclic/periodic data transmission
Client IP for spontaneous transmission	0.0.0.0 =not active	0.0.0.0	The IP address of the controlling station for spontaneous transmission of events and integrated totals
IEC 60870-5 Information Objects			
Measured value mapped address	1-4095	1	Starting address for mapped static measured value objects
Measured value default type	M_ME_NA_1 M_ME_NB_1 M_ME_NC_1 M_ME_TA_1 M_ME_TB_1 M_ME_TC_1 M_ME_TD_1 M_ME_TE_1 M_ME_TF_1	M_ME_NB_ 1	The default type of static measured value objects for Read requests
Measured value event type	M_ME_TA_1 M_ME_TB_1 M_ME_TC_1 M_ME_TD_1 M_ME_TE_1 M_ME_TF_1	M_ME_TE_ 1	The default type of measured value objects for event reporting
Single point mapped address	1-4095	101	Starting address for mapped static single point objects
Single point default type	M_SP_NA_1 M_SP_TA_1 M_SP_TB_1	M_SP_NA_ 1	The default type of static single point objects for Read requests
Single point event type	M_SP_TA_1 M_SP_TB_1	M_SP_TB_1	The default type of single point objects for event reporting
Double point mapped address	1-4095	201	Starting address for mapped static double point objects

Parameter	Options	Default	Description
Double point default type	M_DP_NA_1 M_DP_TA_1 M_DP_TB_1	M_DP_NA_ 1	The default type of static double point objects for Read requests
Double point event type	M_DP_TA_1 M_DP_TB_1	M_DP_TB_ 1	The default type of double point objects for event reporting
Integrated totals mapped address	1-4095	301	Starting address for mapped static integrated totals objects
Integrated totals default type	M_IT_NA_1 M_IT_TA_1 M_IT_TB_1	M_IT_NA_1	The default type of static integrated totals for Read requests
Integrated totals event type	M_IT_TA_1 M_IT_TB_1	M_IT_TB_1	The default type of integrated totals for event reporting
Measurement Units			
Voltage units	0=V, 1=kV	V	Units of voltage measured values
Current units	0=A, 1=kA	A	Units of current measured values
Power units	0=kW, 1=MW	kW	Units of power measured values

NOTES:

- In IEC 60870-5-104 the maximum length of the variable frame, the common address of ASDU, information object address and cause of transmission length are permanently set to values indicated in the table and the optional settings are ignored.
- Selecting the one-octet information object address length for IEC 60870-5-101 will limit the range of objects to only mapped points in the range of 1 to 255 and will make impossible configuring IEC 60870-5 in the device via IEC 60870-5-101 ports.

Remapping Point Addresses and Event Reporting

NOTE:

The process measurement scales for most analog values depend on your external PT and CT settings and on the voltage and current scales defined in the meter. Configure them in your meter and save to the device site database before configuring event deadbands. See Basic Setup and Device Options Setup in the EM133 Installation and Operation Manual on how to configure these parameters in the meter.

To remap static object point addresses to the configurable address space and to configure corresponding event objects:

1. Select IEC 60870-5 Setup from the Meter Setup menu, and then click on the IEC 60870-5 Mapped Points and Events Setup tab.

				Mapped Point A	ddresses a	nd Event Definition			
No.	IO Address	Default Type	Point ID	Group		Parameter	Relation	Threshold/ Deadband	Clas
1	1	M_ME_NB_1	0x1100	AVR PHASE	-	V1	Delta	0.0	
2	2	M_ME_NB_1	0x1101	AVR PHASE	•	V2	Delta	0.0	
3	3	M_ME_NB_1	0x1102	AVR PHASE	-	V3	Delta	• 0.0	Г
4	4	M_ME_NB_1	0x1103	AVR PHASE	-	11	Delta	• 0.00	
5	5	M_ME_NB_1	0x1104	AVR PHASE	-	12	Delta	• 0.00	
6	6	M_ME_NB_1	0x1105	AVR PHASE	-	13	Delta	0.00	
7	7	M_ME_NB_1	0x1106	AVR PHASE	-	kW L1	Delta	0.000	
8	8	M_ME_NB_1	0x1107	AVR PHASE	_	kW L2	Delta	0.000	
9	9	M_ME_NB_1	0x1108	AVR PHASE	•	kW L3	Delta	0.000	Г
10	10	M_ME_NB_1	0x1109	AVR PHASE	_	kvar L1	Delta	0.000	
11	11	M_ME_NB_1	0x110A	AVR PHASE	•	kvar L2	Delta	0.000	
12	12	M_ME_NB_1	0x110B	AVR PHASE	-	kvar L3	Delta	0.000	
13	13	M_ME_NB_1	0x110C	AVR PHASE		kVAL1	Delta	0.000	
14	14	M_ME_NB_1	0x110D	AVR PHASE		kVA L2	Delta	0.000	Г
15	15	M_ME_NB_1	0x110E	AVR PHASE	-	kVAL3	Delta	0.000	Г
16	16	M_ME_NB_1	0x110F	AVR PHASE		PF L1	Delta	0.000	
17	17	M_ME_NB_1	0x1110	AVR PHASE		PF L2	Delta	0.000	Г
18	18	M_ME_NB_1	0x1111	AVR PHASE	-	PF L3	Delta	0.000	
19	19	M_ME_NB_1	0x1400	AVR TOTAL	_	kW			
20	20	M_ME_NB_1	0x1401	AVR TOTAL	-	kvar			Г
24	24	N NE NE 4	01.000	ALCO TOTAL		14 /4	0	0.000	-

- 2. Select an object group and parameter for points you wish to remap. Object types and addresses are assigned automatically upon the starting mapped address and default static type you selected for the type of objects in the IEC 60870-5 Options Setup. When saving the setup to the device database or sending to the meter all points are automatically arranged in the order: measured values, single point objects, double point objects, integrated totals.
- 3. If you wish to use a static point for reporting events, select a relation and an operating threshold or a deadband to be used for detecting events and check the Class 1 box for the point. The following options are available:
- Delta a new event is reported when the absolute value of the difference between the last reported point value and its current value exceeds the specified deadband value, or the status of a binary point changes. Measured values with a zero deadband will not be checked for events;
- More than (over) a new event is reported when the point value rises over the specified threshold, and then when it returns below the threshold minus a predefined return hysteresis – applicable for measured values;
- Less than (under) a new event is reported when the point value drops below the specified threshold, and then when it returns above the threshold plus a predefined return hysteresis applicable for measured values.

Hysteresis of the return threshold for measured values is 0.05 Hz for frequency and 2% of the operating threshold for other points.

All thresholds/deadbands for measured values should be specified in primary units.

4. Click Save as... to store your setup in the device site database, and click Send to send the setup to the device.

Configuring Class 2 Data and Counter Transmission

This setup allows you to configure object address ranges for interrogation, cyclic/periodic data transmission, and spontaneous counter transmission with or without local freeze/reset.

To configure object address ranges for data transmission:

1. Select IEC 60870-5 Setup from the Meter Setup menu, and then click on the IEC 60870-5 Class 2 Data and Counters Setup tab.

	IO Address Ranges for Data Transmission										
No.	Туре	Start IO Address	Number of Points	General Interrogation	Group Interrogat		Cyclic/ Spontaneous	Local Freeze	Freeze with Rese		
1	M_ME_TE_1 (CP56Time2a)	- 1	24			-					
2	M_IT_TB_1 (CP56Time2a)	- 301	4			-					
3											
4											
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											
		1		-			_	_	_		

 Select object type and specify ranges of points to be included into interrogation responses or/and cyclic/spontaneous data transmission. Only mapped point addresses and general object addresses can be used for interrogation and cyclic/spontaneous transmission

οк

Cancel

Help

Up to 32 address ranges can be selected. Fill rows in succession without gaps. The first blank row will be taken as the end of a range list.

NOTE:

Though double point objects occupy two adjacent addresses, always specify the actual number of requested double points as you define other object ranges.

Class 2 interrogated and cyclic/spontaneous data are always transmitted in the order they are listed in the setup. If you put ranges of point of the same type at continuous rows, they will be packed together and transmitted using minimum number of frames.

- 3. Check the "General Interrog" box for ranges you wish to include into the general/station interrogation.
- Select appropriate groups in the "Group Interrog" box for ranges you wish to include into group interrogation. Each range of points can be allocated for both global and group interrogation.
- 5. Check the "Cyclic/Spont." box for ranges you wish to include into cyclic/spontaneous data transmission.

Analog and binary data checked for cyclic transmission will be transmitted as cyclic messages. The IEC 60870-5-104 cyclic data transmission period is configurable via the IEC 60870-5 Options setup.

Integrated totals checked for spontaneous transmission will be transmitted as spontaneous messages at configurable local counter freeze/transmission intervals.

6. Check the "Local Freeze" box for A and B modes of transmission of integrated totals with local freeze.

NOTE:

Counters checked for spontaneous transmission without local freeze will be periodically reported at specified counter freeze/transmission intervals either with the frozen counter values if a remote freeze command was issued for counters before (mode D of acquisition of integrated totals), or with the actual counter values for counters that were not frozen.

- 1. Check the "Freeze with Reset" box for integrated totals for which local freeze with reset should be applied.
- 2. Click Save as... to store your setup in the device site database, and click Send to send the setup to the device.

Chapter 10 Device Control

This chapter describes how to change device modes, view and clear device diagnostics, and directly operate relay outputs in your PM180 from PAS. To access device control options you should have your device online.

Authorization

If your device is password protected (see <u>Access Control Menu</u> in Chapter 3 and <u>Changing the</u> <u>Password and Security</u> in Chapter 3), you are prompted for the password when you send your first command to the device.

Authorization Required							
Password: 0							
OK	Cancel						

Enter the password and click OK. If your authorization was successful, you are not prompted for the password again until you close the dialog window.

Remote Relay Control

From PAS, you can send a command to any relay in your device or release a latched relay, except of the relays that are linked to the internal pulse source. Such relays cannot be operated outside of the device.

To enter the Remote Relay Control dialog, check the On-line 🔊 button on the PAS toolbar, select Device Control from the Monitor menu, and then click on the Remote Relay Control tab.

emote R	lelay Control E	vent Flags Device	Diagnostics	Communications		
Relay No.	Relay Status	Remote/Local Latch	Blocking	Remote Command		
1	CLOSED	NO	NO	NONE		
2	OPEN	NO	NO	NONE	Clear	
3	OPEN	NO	NO	NONE	▼ Print	
4	OPEN	NO	NO	NONE	Sand	-
5	OPEN	NO	NO	NONE	Send	
6	OPEN	NO	NO	NONE	 Receive 	
7	OPEN	NO	NO	NONE		
8	OPEN	NO	NO	NONE	-	
9					_	
10						
11						
12						
13						
14						
15						
16						

To send a remote command to the relay:

- 1. From the "Relay Command" box for the relay, select the desired command.
- 2. Click on Send.

The dialog shows you the present relay status and whether it is latched by a remote command or locally from the setpoints.

Device Event Flags

The PM180 has 16 common event flags that are intended for use as temporary event storage and can be tested and operated from the control setpoints. You can transfer an event to the setpoints and trigger its operation remotely by changing the event status through PAS.

To enter the Event Flags dialog, check the On-line button on the PAS toolbar, select Device Control from the Monitor menu, and then click on the Event Flags tab.

	Fue	est.	Flags		_	.		
Flag No.	Status		Flag No.	Status	_	-		
1	5	-1	33	OFF	-		Char 1	
2	OFF	•	34	OFF	-		Clear	
3	OFF ·	•	35	OFF	-		Print	
4	OFF	•	36	OFF	•		Send	
5	OFF	•	37	OFF	•			
6	OFF	•	38	OFF	•		Receive	
7	OFF	•	39	OFF	•			
8	OFF	•	40	OFF	•	•		

To change the status of an event flag:

- 1. From the "Status" box for the event flag, select the desired flag status.
- 2. Click on Send.

Viewing and Clearing Device Diagnostics

You can examine the present device diagnostics status and clear it via PAS.

To enter the Device Diagnostics dialog, check the On-line 0 button on the PAS toolbar, select Device Control from the Monitor menu, and then click on the Device Diagnostics tab.

PM180_USB - Device	Control		×
Remote Relay Control	Event Flags Device Diagnostic	© Communications	
	Device Diagnosti	ics 🔺	
	Device Fault	Status	
	Critical Error		
	Permanent Fault (critical)		
	RAM/Data Fault		
	HW Watchdog Reset		
	DSP/Sampling Fault		Clear
	CPU Exception		
	Run-time Error		Receive
	SVV Watchdog Reset		
	Power Down	✓	
	Device Reset		
	Configuration Reset	✓	
	RTC Fault (critical)		
	Configuration Fault (critical)		
	Battery Low		
	Expanded Memory Fault		
	CPU EEPROM Fault		
	OK	Cancel	pply Help

To clear the device diagnostics events, click on Clear.

Refer to <u>Device Diagnostic Codes</u> in Appendix F for the list of diagnostic codes and their meanings. See <u>Device Diagnostics</u> in Chapter 3 for more information about device diagnostics.

Updating the Clock

To update the Real-Time Clock (RTC) in your device, select a device site from the list box on the toolbar, check the On-line button O on the PAS toolbar, and then select RTC from the Monitor menu.

The RTC dialog displays the current PC time and the time in your device. To synchronize the device clock with the PC clock, click Set. You need not update the clock in your device if the clock is synchronized to the external GPS master clock.

PM180_U5B - Rea	al Time Clock				×	
PC time:	13:24:14 10/2	25/12 THU		Read		
Device time:	Device time: 13:24:14 10/25/12 THU					
	Castinuaus	Chan		Close		
	Continuous	Stop				

Resetting Accumulators and Clearing Log Files

PAS allows you to clear energy accumulators, maximum demands, Min/Max log registers, counters and log files in your device. To open the Reset dialog, select a device site from the list box on the toolbar, check the On-line button on the toolbar, and then select Reset from the Monitor menu.

Reset - PM180_USB					>
Reset					
		Reset Energ	Y		
	F	Reset Max. Den	nands		
	Reset Billing/TOU Energy				
	Reset Billing/TOU Max. Demands				
	Reset Counters				
	Clear Min/Max Log				
	Clear Event Log				
		Clear Data L	og		
		Clear Waveforr	n Log		
		Clear SOE L	og 🔤		
		Clear PQ Lo	g		
		Clear Fault L	og		
		Clear all Log F	iles		
	Clear	Operation/Ever	t Counters		
		ОК	Cancel	Apply	Help

To reset the desired accumulation registers or to clear a file, click on the corresponding button. If a target has more than one component, you are allowed to select components to reset. Check the corresponding boxes, and then click OK.

Upgrading Meter Firmware

You can upgrade device firmware through any communication port installed in your meter: a serial port, USB, Ethernet, a wireless cellular network or a telephone modem.

Downloading firmware is only supported through the Modbus RTU/ASCII and Modbus/TCP protocols. If you are connected to the meter via a serial port, ensure that it operates in Modbus mode. It is also recommended to set the serial port baud rate to 115,200 bps. See <u>Configuring</u> <u>Communications</u> on how to remotely change the protocol and baud rate in your meter.

To download a firmware file to your meter:

1. Check the On-line button on the PAS toolbar, select Flash Downloader from the Monitor menu, and then confirm changes.

· · 🛧 🔤 « Active > PM180 :	→ Firmware →	MAIN > V31.X.32 > Download	~ Ū	Search Download		۶
Organize 🔻 New folder						
🕂 Downloads	^	Name		Date modified	Туре	
👌 Music		PM180_31.4.32_6BB1.hex		19/06/2019 10:42	HEX File	
E Pictures		PM180_31.5.32_23B0.hex		19/06/2019 10:43	HEX File	
📕 Videos		PM180_31.7.32_E31D.hex		19/06/2019 10:45	HEX File	
Windows (C:)		PM180_31.8.32_0FC7.hex		19/06/2019 10:47	HEX File	
Recovery Image (D:)		PM180_31.14.32_5CC7.hex		19/06/2019 10:53	HEX File	
HP_TOOLS (E:)		PM180_31.15.32_67E1.hex		19/06/2019 10:56	HEX File	
HP Port Rep (F:)		PM180_31.17.32_9FDE.hex		19/06/2019 10:59	HEX File	
sem\$ (\\ifs) (H:)		PM180_31.18.32_7592.hex		19/06/2019 11:02	HEX File	
👳 isg\$ (\\jfs) (l:)						
🚍 priority\$ (\\jererp) (K:)						
🛖 marketing\$ (\\jfs) (M:)						
🛖 engineering\$ (\\jfs) (N:)						
🛫 rnd\$ (\\jfs) (R:)	~					
	¥	<				
File name: PM180_31.	5.32_23B0.hex		~	.hex		~

- 2. Point to the firmware upgrade file, click Open, and then confirm upgrading the meter.
- 3. When asked for the password, type the meter password, and click OK.

PM180 - R:\\MAIN\V31.X.3	1\Download\PM18	_		Х
1	Downloading file			
20.3% done	Cancel		00h 00m 19s	left

4. Wait until PAS completes downloading the file. It takes about 9-10 minutes at 115,200 bps via a serial port, or about 20 seconds via a USB port, to download the file to the meter.

PM180 - R:\\MAIN\V31.X.31\Download\PM18	_	×
Download is complete		
OK		

5. Wait about 10 seconds until the meter completes burning firmware into the flash and reboots before any further manipulating with the meter.

NOTES

- 1. When the meter reboots, the Internet connection via the Ethernet, a telephone or a cellular network may be temporarily lost. You may need to wait a short duration before PAS restores a connection with your meter.
- 2. If you are connected to the meter via a wireless cellular network using a temporary IP address, the IP address you used for connecting to the meter will no longer be in effect. You should check the meter for a new IP address either from the front display, or via PAS using another communication port.

Chapter 11 Monitoring Devices

Viewing Real-time Data

Real-time data is continuously retrieved from your devices and updated on the screen at the rate you defined in the Instrument Setup.

To get real-time data from your device, select the device site from the list box on the PAS toolbar, point to RT Data Monitor on the Monitor menu, and then select a data set you want to view.

Organizing Data Sets

PAS supports 33 programmable data sets with up to 40 data parameters. Set #0 is intended for simple meters, which have a limited number of parameters, and is not recommended for the use with the PM180. To re-organize data sets, select Data Set from the Monitor menu or click on the button in on the local toolbar.

ita Se	:t								>
RT Da	ata Set Definition								
								_	
Set ‡	1 REAL-TIME	MEASUREMENTS							
No	Group	Parameter		No	Group		Parameter		<u>C</u> lear
1	RT PHASE	· V1	•	21	RT PHASE	•	V3 THD	•	
2	RT PHASE	· V2	•	22	RT PHASE	•	II THD	•	Сору
3	RT PHASE	· V3	•	23	RT PHASE	•	12 THD	•	Paste
4	RT PHASE	· 11	•	24	RT PHASE	•	13 THD	•	
5	RT PHASE	· 12	•	25	RT PHASE	•	11 KF	•	
6	RT PHASE	· 13	•	26	RT PHASE	•	12 KF	•	
7	RT PHASE	· KVV L1	•	27	RT PHASE	•	13 KF	•	
8	RT PHASE	· KVV L2	•	28	RT TOTAL	•	KVV	•	
9	RT PHASE	· KVV L3	•	29	RT TOTAL	•	kvar	•	
10	RT PHASE	kvarL1	•	30	RT TOTAL	•	kVA	•	
11	RT PHASE	kvarL2	•	31	RT TOTAL	•	PF	•	
12	RT PHASE	kvarL3	•	32	RT TOTAL	•	PF LAG	•	
13	RT PHASE	kVA L1	•	33	RT TOTAL	•	PF LEAD	•	
14	RT PHASE	kVA L2	•	34	RT AUX	•	In	•	
15	RT PHASE	kVAL3	•	35	RT AUX	•	FREQ	•	
16	RT PHASE	PF L1	•	36	RT PHASE	•	V12	•	
17	RT PHASE	PF L2	•	37	RT PHASE	•	V23	•	
18	RT PHASE	PFL3	•	38	RT PHASE	-	V31	•	
19	RT PHASE	V1 THD	•	39	NONE	•	NONE		
20	RT PHASE	V2 THD	•	40	NONE	-	NONE		
,					•			_	
					OK		Cancel 🛛 🔺	pply	Help

Some data sets are preset for your convenience and others are empty. You can freely modify data sets.

Polling Devices

To run data polling, check the On-line button on the PAS toolbar, and then click on either the Poll button or Continuous Poll button on the local toolbar. Click on the Stop button toolbar.

stop continuous polling,

You can open as many data monitor windows as you wish, either for different sites, or for the same site using different data sets.

An open data monitor window is linked to the current site and does not change if you select another site in the site list.

You can view acquired data in a tabular form or in a graphical form as a data trend.

The following picture shows a typical data monitor window.

MONITORING DEVICES

						PM18	O USB	RT Data I	Aonitor S	et#1_RE4	TIME ME	ASUREMEN	TS 10/25/12	2 13:50:53							_
	Date/Time	¥1	¥2	¥3	I1	12	13	kW L1					kvar L3		kVA L2	kVA L3	PF L1	PF L2	PF L3	V1 THD	¥2
	10/25/12 13:50:15	232	232.5	231.4	0.01	0	0	0	0	0	0	0	0	0	0	0	-0.589	0	0	2.4	
	10/25/12 13:50:16	231.9	232.1	232.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.3	
	10/25/12 13:50:17	232.4	232.6	232.9	0.01	0	0	0	0	0	0	0	0	0	0	0	-0.214	0	0	2.3	
	10/25/12 13:50:18	233.2	232.5	232.6	0.01	0	0	0	0	0	0	0	0	0	0	0	-0.853	-0.626	-0.444	0	
	10/25/12 13:50:19	232.2	231.6	232.6	0.01	0.01	0	0	0	0	0	0	0	0	0	0	-0.918	-0.422	0	2.4	
	10/25/12 13:50:20	231.2	232	232	0.01	0	0	0	0	0	0	0	0	0	0	0	-0.851	0	0	2.3	
1	10/25/12 13:50:21	232.3	232.2	232.2	0.01	0	0	0	0	0	0	0	0	0	0	0	-0.993	0	0	2.2	
1	10/25/12 13:50:22	232.3	232.2	232.5	0.01	0	0	0	0	0	0	0	0	0	0	0	0.703	0	0	2.3	
	10/25/12 13:50:23	232.4	232.4	232.1	0.01	0	0	0	0	0	0	0	0	0	0	0	-0.904	0	0	2.3	
1	10/25/12 13:50:24	231.3	232.5	232.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.3	
1	10/25/12 13:50:25	231.7	233.3	232.7	0.01	0.01	0	0	0	0	0	0	0	0	0	0	0.369	-0.647	-0.684	2.3	
1	10/25/12 13:50:26	232.1	232.4	232.6	0.01	0	0	0	0	0	0	0	0	0.001	0	0	-0.707	-0.450	-0.546	2.2	
1	10/25/12 13:50:27	232.3	232.5	232.2	0.01	0	0	0	0	0	0	0	0	0	0	0	0.976	0	0	2.3	
1	10/25/12 13:50:28	233.5	231.8	231.6	0	0	0	0	0	0	0	0	0	0	0	0	-0.978	0	0	2.2	
	10/25/12 13:50:29	232.4	231.7	231.7	0.01	0	0	0	0	0	0	0	0	0	0	0	0.995	0	0	2.2	
	10/25/12 13:50:30	231.6	232.3	232.4	0.01	0	0	0	0	0	0	0	0	0	0	0	-0.988	0	0	2.2	
	10/25/12 13:50:31	232.3	232	232.5	0	0	0	0	0	0	0	0	0	0	0	0	-0.354	0	0	2.1	
	10/25/12 13:50:32	232.3	232.3	232.1	0.01	0	0	0	0	0	0	0	0	0	0	0	0.549	0	0	2.2	
	10/25/12 13:50:33	232.1	232.8	233.3	0.01	0	0	0	0	0	0	0	0	0	0	0	-0.715	0	0	2.2	
	10/25/12 13:50:34	231.7	231.6	231.6	0.01	0	0	0	0	0	0	0	0	0	0	0	-0.110	0	0	2.2	
	10/25/12 13:50:35	231.5	231.8	232.1	0.01	0	0	0	0	0	0	0	0	0	0	0	0.161	0	0	2.2	
1	10/25/12 13:50:36	232.1	232	232.2	0.01	0	0	0	0	0	0	0	0	0	0	0	0.817	0	0	2.1	
	10/25/12 13:50:37	231.4	231.9	232.2	0.01	0.01	0.01	0	0	0	0	0	0	0	0	0	0.954	-0.757	-0.870	2.2	
	10/25/12 13:50:38	231.7	232.2	232.3	0.01	0	0	0	0	0	0	0	0	0	0	0	-0.483	0	0	2.2	
	10/25/12 13:50:39	232.5	231.6	231.8	0.01	0	0	0	0	0	0	0	0	0	0	0	0.822	0	0	2.1	
	10/25/12 13:50:40	232.7	232.1	232	0.01	0	0	0	0	0	0	0	0	0	0	0	0.846	0	0	2.2	
	10/25/12 13:50:41	232.2	232.4	232.2	0.01	0.01	0	0	0	0	0	0	0	0	0.001	0	0.885	-0.954	-0.995	2	
	10/25/12 13:50:42	232.6	231.9	232.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2.2	
	10/25/12 13:50:43	232.1	232.3	233.2	0.01	0	0	0	0	0	0	0	0	0	0	0	-0.926	0	0	2.1	
	10/25/12 13:50:44	232.8	232	232.4	0.01	0	0	0	Ō	0	Ō	0	0	Ō	0	0	-0.932	0	0	2.2	
	10/25/12 13:50:45	232.7	233.1	232.2	0.01	0	0	0	0	0	0	0	0	0	0	0	-0.519	0	0	2.2	
	10/25/12 13:50:46	232.1	232.4	232.5	0.01	0	0	0	0	0	0	0	0	0	0	0	-0.997	0	0	2.2	
	10/25/12 13:50:47	232.9	231.7	232.6	0.01	0	0	0	0	0	0	0	0	0	0	0	-0.705	-0.206	0	2.3	
	10/25/12 13:50:48	232.1	231.7	232.2	0.01	0	0	0	0	0	0	0	0	0	0	0	0.892	0	0	2.3	
	10/25/12 13:50:49	232.7	232.8	232.1	0.01	0	0	0	0	0	0	0	0	0	0	0	-0.893	0	0	2.3	
	10/25/12 13:50:50	232	232.7	232	0.01	0.01	0	0	0	0	0	0	0	0	0	0	-0.986	-0.907	0	2.3	
	10/25/12 13:50:51	232.8	232.4	231.9	0.01	0	0	0	0	0	0	0	0	0	0	0	0.602	0	0	2.3	
i	10/25/12 13:50:52	231.7	232.4	232.4	0.01	0	0	0	0	0	0	0	0	0	0	0	0.217	0	0	2.3	
Ī	10/25/12 13:50:53	232.3	234	233	0.01	0	0	0	Ō	0	Ō	0	0	Ō	0	0	0.987	0	0	2.3	
į																					

Polling Options

To change the polling options, click on the Data Monitor window with the right mouse button and select Options.

Options	×
View Table	
Records in table:	Units: Voltage © Primary © Secondary
Do not stop on er	ror Current C Primary C Secondary
ОК	Cancel Apply Help

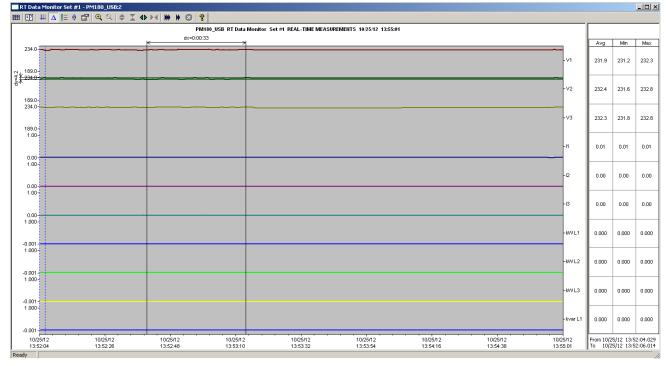
If you check "Do not stop on errors", polling is resumed automatically when a communication error occurs, otherwise polling stops until you restart it manually.

Viewing a Data Table

Changing the Data View

PAS displays data in either a single record or multi-record view. To change the view, click on the Data Monitor window with the right mouse button and select either Wrap to see a single record, or UnWrap to go to the multi-record view.

Adjusting the Number of Rows in a Multi-Record View


Click the window with the right mouse button, select Options, adjust the number of records you want to see in the window, and then click OK. When the number of retrieved records exceeds the number of rows in the window, the window scrolls up so that older records are erased.

Selecting Primary and Secondary Units

Voltages and currents can be displayed in primary or secondary units. To select primary or secondary units for your data views, click on the monitor window with the right mouse button, select Options, select the desired units for voltages and currents, and then click OK.

Viewing Data Trend

To view a data trend, click on the 🖾 button on the local toolbar. To change the time range for your graph, click on the 🏥 button on the local toolbar, and then select the desired date and time range.

Selecting Channels

To select data channels for your trend, click on the trend window with the right mouse button, select "Channels", check the channels you want displayed, and then click OK.

Customizing Line Colors and Styles

Trend lines for different channels can be shown in different colors using different line styles. To change the colors or line styles, click on the trend window with the right mouse button, select "Options...", click on the "Display" tab, adjust colors and styles for channels, and then click OK. You can also change the colors for the background and gridlines.

Using the Marker Lines

The trend window has two blue dashed marker lines. The left marker indicates the starting position for calculating the average and peak values, and the right marker indicates the end position.

To change the marker position, click on the trend window with the right mouse button and select Set Marker, or click on the H button on the window toolbar, and then click with left mouse button on the point where you want to put the marker. You can also drag both markers with the mouse, or use the right and left arrow keys on your keyboard to change the marker position. Click on the trend pane with the mouse before using the keyboard, to allow the keyboard to get your input.

Delta Measurements

To measure the distance between two trend points, click on the Delta button Δ on the toolbar, click with the left mouse button on the first point, and then click on the second point. The first reference point is frozen until you close and reopen Delta, while the second point can be placed

anywhere within the trend line. You can measure a delta in both directions. To disable Delta, click on the Delta button again.

Using a Zoom

You can use a horizontal and a vertical zoom to change size of your graph. Use the buttons on you local toolbar representing green arrowheads to zoom in or out of the trend graph. Every click on these buttons gives you a 100-percent horizontal zoom. Two buttons representing a magnifying glass give you a proportional zoom in both directions.

Saving Data to a File

To save retrieved data to a file for later analysis, click on the Save button \Box , select a directory where you want your log files to be stored, select a database or type the name for a new database, and then click Save. To avoid confusion, do not store data files into the "Sites" directory where site databases are located.

Printing Data

To print retrieved data, click the 🖨 button on the PAS toolbar, select a printer, and then click OK. To check the report, as it will look when printed, select Print Preview from the File menu.

Copying Data

To copy the entire data table or a part of a table into the Clipboard or into another application such as Microsoft Excel or Word:

- Click on the Data Monitor window with the right mouse button and choose Select All, or click on the upper-left corner of the data table (where the "No." label is displayed).
- 2. Click on the Data Monitor window with the right mouse button again and choose Copy or click on the Copy button 🗈 on the PAS toolbar.
- 3. Run an application to where you want to copy data, position cursor at the correct place, and then click on the Paste button and the application's toolbar, or select Paste from the Edit menu.

If you want only a part of data to be copied, select with the mouse while holding the left mouse button the rows or columns in the table you want to copy, and then click on the Copy button in the PAS toolbar.

Real-time Data Logging

PAS allows you to log polled data records to a database automatically at the time it updates the Data Monitor window on the screen.

To setup the real-time logging options:

1. Open the Data Monitor window.

2. Click on the "RT Logging On/Off" 🔁 button on the local toolbar, or select "RT Logging Options" from the Tools menu.

3. Select a database, or type the name for a new database and select a directory where you want to save it.

4. Select the number of tables, and the number of records in each table you want recorded.

5. Adjust the file update rate for automatic recording. It must be a multiple of the sampling rate that you defined in the Instrument Setup dialog.

6. Click Save.

When you run real-time data polling, PAS automatically saves retrieved records to the database at the rate you specified. The "RT Logging On/Off" button 😵 on the toolbar should be checked all the time to allow PAS to perform logging. You can suspend logging by un-checking this button, and then resume logging by checking it again.

Viewing Real-time Min/Max Log

To retrieve the real-time Min/Max log data from your device, select the device site from the list box on the PAS toolbar, point to RT Min/Max Log on the Monitor menu, and then select a data set you want to view.

PAS supports nine programmable data sets with up to 40 data parameters in each one. To reorganize data sets, select Data Set from the Monitor menu or click on the 🛅 button on the toolbar. You can modify data sets in the way that is convenient for your use.

To retrieve the selected Min/Max log data, check the On-line button 🔅 on the PAS toolbar, and then click on the Poll button 🕨.

You can save retrieved data to a file or print it in the same manner as described in the previous section.

Viewing Real-time Waveforms

To retrieve the real-time waveforms from your device, select the device site from the list box on the toolbar, and then select RT Waveform Monitor from the Monitor menu.

To retrieve waveforms, check the On-line button 💞 on the PAS toolbar, and then click on either

the Poll button 🔅 or Continuous poll button 🗰 . Click on the Stop button 😢 to stop continuous polling.

PAS normally retrieves eight 4-cycle AC waveforms (V1-V4 and I1-I4) sampled at a rate of 128 samples per cycle. If you wish to get only waveforms for selected phases, select "Options" from the Tools menu, click on the Preferences tab, check the phases you want polled, and then click OK.

To view AI waveforms, or to change channels displayed in the window, click on the waveform window with the right mouse button, select "Channels', check channels you want displayed, and then click OK.

Retrieved waveforms can be displayed in different views as overlapped or non-overlapped waveforms, as RMS cycle-by-cycle plot, or as a harmonic spectrum chart or table. See <u>Viewing</u> <u>Waveforms</u> in Chapter 13 for information on using different waveform views.

Chapter 12 Retrieving Recorded Files

Using PAS, you can retrieve recorded events, data and waveforms from your devices and save them to files on your PC in the MS Access database format.

Historical data can be uploaded on demand any time you need it, or periodically through the Upload Scheduler that retrieves data automatically on a predefined schedule, for example, daily, weekly or monthly. If you do not change the destination database location, the new data is added to the same database so you can store long-term data profiles in one database regardless of the upload schedule you selected.

Uploading Files on Demand

To retrieve the log files from your device:

- 1. Select a device site from the list box on the PAS toolbar.
- 2. Check the On-line button 💖
- 3. Select Upload Logs from the Logs menu.

Cog Files Cog Files Cog EM920 Cog EM920 Cog EM920 Cog EM920 Cog EM920 Cog EM920 Cog EM92 Cog EM92 Cog EM92 Cog EM92 Cog USB	
20110329_01 File name: PM180_USB	ОК

- 4. Select a database, or type the name for a new database, and select a directory where you want to save it.
- 5. Click on the "Select Logs" button and check boxes for logs you want to be retrieved from the device.

Select Logs	×
Check All Clear All	 Do not scan for new records Do not retrieve skipped waveforms
Event Log PQ Log SOE Log Fault Log	From
Data Log ▼ 1 ▼ 2 ■ 3 ■ 4	25/10/2012 -
5 6 7 7 8 9 7 10 7 11 7 12	To 7
▼ 13 ▼ 14 ▼ 15 ▼ 16	25/10/2012
Waveform Log —	
□ 1 □ 2 □ 3 □ 4 □ 5 □ 6 ☑ 7 ☑ 8	
ОК	Cancel

- 6. If you wish to retrieve data starting with a known date, check the "From" box and select the start date for retrieving data.
- 7. If you wish to retrieve data recorded before a known date, check the "To" box and select the last date for retrieving data.
- 8. Click OK.

Using the Upload Scheduler

To setup the Upload Scheduler:

1. Select Upload Scheduler from the Logs menu.

			Registered Sites				Configure
nabled	Site Name	Status	Schedule	Last Access	Next Access		
	EM720_204	Off	Daily	N/A	06/26/12 00:00:00		Export
v	PM180_USB	Waiting	Daily	N/A	10/26/12 00:00:00		
~	PM180	Waiting	Daily	N/A	10/26/12 00:00:00		Delete
							Add Site
							Close
						-	🗌 Check All
							UnCheck Al
							Suspend Scheduler
							Start Now
						-	

- 2. Click Add Site, point to the site database for which you want to organize the schedule, and then click OK.
- Click Browse and select a database for storing retrieved data, or type the name for a new database, select a directory where you want to save it, and then click OK.
- 4. Click Configure or double click on the site row.

Configure - PM180_USB
Upload Schedule
C Periodic Each, hh:mm 01:00
Daily Start time, hh:mm 00:00
C Weekly Day of week Sunday
C Monthly Day of month 1
Attempts Number 4 = Delay between attempts, mm:ss 00:30
RTC Synchronization
Enable Password
Select Logs Auto Archive
OK Cancel

- 5. Select a daily, weekly or monthly schedule, and adjust the start time. If you wish to upload data periodically in predefined intervals, click on "Periodic" and define the time period in hours and minutes.
- 6. Select the number of attempts to upload data in the event of temporary communication problems or unavailability of your device, and the delay between attempts in minutes and seconds.
- If you wish to use the schedule to synchronize the device clock with your PC, check the "RTC Synchronization Enable" box. If your device is password protected by a communications password, type in the password you set in the device to allow PAS to update the clock.
- 8. Click on the Select Logs button, check the boxes for logs you want to upload on a schedule, and then click OK.
- 9. Check the Enabled box at left to activate a schedule for the device.
- 10. Click OK to store your schedule.

To keep the Upload Scheduler running, the On-line button on the PAS toolbar must be checked all the time. If you uncheck it, the scheduler stops operations. This does not cause loss of data, since the scheduler will resume operations when you check this button again.

Suspending the Scheduler

To suspend the Upload Scheduler, check the Suspend Scheduler box at right. To activate the Upload Scheduler, leave this box unchecked.

Running the Scheduler on Demand

You can run the scheduler at any time outside the schedule by checking the Start Now box at right. This is a one-time action. After uploading is completed, the Upload Scheduler un-checks this box automatically.

Reviewing Upload Problems

When the Upload Scheduler fails to retrieve data from the device, or some data is missing, or another problem occurs, it puts an error message to the log file. To review this file, select System Log from the View menu.

Retrieving EN50160 Statistics Files

The EN50160 statistics files and present contents of the EN50160 evaluation counters can be retrieved by PAS and stored to a database for later analysis.

Using the Upload Scheduler

The PAS Upload Scheduler automatically retrieves the EN50160 statistics files on a daily or weekly basis depending on the EN50160 evaluation period selected in your device.

Select the Daily or Weekly schedule for the EN50160 statistics files when configuring the upload schedule (see <u>Using the Upload Scheduler</u>). Check the Data log #9 and #10 boxes in the Select Logs dialog box for uploading the EN50160 Compliance Statistics and EN50160 Harmonics Survey files respectively.

Retrieving EN50160 Statistics Files on Demand

To manually retrieve the EN50160 statistics files on demand, select "Upload EN50160 Compliance Stats" from the Logs menu and specify the database to which you want the data to be stored.

Retrieving the EN50160 Online Statistics

To retrieve the present contents of the EN50160 statistics counters accumulated since the beginning of the current evaluation period, select "Upload EN50160 Online Stats" from the Logs menu and specify the database to which you want the data to be stored. The statistics records are marked as online events.

See <u>Viewing the EN50160 Online Statistics Report</u> for information on how to get the EN50160 compliance report for the latest online statistics stored in the database.

Viewing Historical Data On-line

Sometimes, it is useful to review a particular piece of historical data on-line at the time you expect new events to appear in the log. PAS allows you to retrieve historical data from a particular log without storing it to a file. The data appears only in the window on your screen. You can save it manually to the database.

To view the log data on-line, check the On-line button 0 on the PAS toolbar, select the log you want to retrieve in the Logs menu, and then click on the Poll button 0. Only new log records are retrieved from the device. If you want to review the entire log from the beginning, click on the Restore log button 0, and then click on the Poll button $\oiint{0}$.

Notice that there is a difference between retrieving waveforms on-line and viewing waveforms from a file. The online waveforms are read one record a time, so that a multi-record waveform series may not be viewed as a single waveform.

See Chapter 13, <u>Viewing Log Files</u>, for information on using different log views.

Chapter 13 Viewing Log Files

General Operations

Opening a Log File

To open a log file, click on the Open button in on the PAS toolbar, or select "Open..." from the File menu. In the "Files of type" box, select "Access Database (*.mdb)", select a directory where your files are located, point to the file you want to open, select a desired table on the right pane, and then click Open.

Copying Data

To copy the entire data table or graph, or part of the data, into the Clipboard or into another application such as Microsoft Excel or Word:

- 1. Click on the data window with the right mouse button and choose Select All, or, if your current view represents a table, click on the upper-left corner of the table (where the "No." label is commonly displayed).
- 2. Click with the right mouse button on the window again and choose Copy, or click on the Copy button and the PAS toolbar.
- 3. Run the application to which you want to copy data, position the cursor at the correct place, and then click the Paste button 🛍 on the application's toolbar or select Paste from the Edit menu.

Saving Data to a File

To save data to a file, click on the Save button $\mathbf{k}_{,}$ select a directory where you want your log file to be stored, select a database or type the name for a new database, and then click Save. To avoid confusion, do not store data files into the "Sites" directory where site databases are located.

Printing Reports

To print a data report to a printer, click on the print button in on the toolbar, select a printer and click OK. If you want to check how your document appears on the printed page, select Print Preview from the File menu.

Customizing Views

Date Order

To change the way PAS displays the date, select Options from the Tools menu, click on the Preferences tab, select the preferred date order, and then click OK.

Timestamp

The timestamp is normally recorded and displayed on the screen at a 1-ms resolution. If you have an application that does not support this format, you may instruct PAS to drop the milliseconds. To change the way PAS records and displays the timestamp, select Options from the Tools menu, click on the Preferences tab, select the preferred timestamp format, and then click OK.

Voltage Disturbance Units

When programming a voltage disturbance trigger in your device, the operate limit for the trigger can be set either in a percent of the nominal voltage, or in voltage RMS units. To change the disturbance units, select Options from the Tools menu, click on the Preferences tab, select the preferred units, and then click OK.

Viewing the Event Log

Event log files are displayed in a tabular view, one event per row. PAS loads the entire database table to a window, so that you can scroll through the entire log to view its contents.

Ready

📑 Event	: Log - PM180_USB						j
<i>∫</i> ≈ <u>2</u> ↓	🕴 🔛 🕨 🗠 😢 🤶						
			PM180_USB Ev	ent Log 10/25/12 14:16:33			
No.	Date/Time	Event	Cause	Point/Source	¥alue	Effect	Target
1	10/10/12 13:39:59.087	E¥:49	COMM	Data memory		Cleared Event Log	
2	10/14/12 10:52:53.954	E¥:50	EXTERNAL	Power down			
3	10/14/12 10:52:53.954	E¥:52	SELF-CHECK	Device operations		Stopped	
4	10/14/12 10:52:53.955	E¥:51	SELF-CHECK	Critical error			
5	10/14/12 10:53:29.001	E¥:53	EXTERNAL	Power up			
6	10/14/12 10:53:39.083	E¥:54	EXTERNAL	IRIG-B: No signal			
7	10/18/12 15:18:39.343	E¥:55	COMM	Diagnostics		Cleared	
8	10/18/12 15:18:39.343	E¥:56	COMM	Device operations		Started	
9	10/23/12 13:27:15.944	E¥:57	EXTERNAL	Power down			
10	10/23/12 13:27:49.001	E¥:58	EXTERNAL	Power up			
11	10/23/12 13:27:59.083	E¥:59	EXTERNAL	IRIG-B: No signal			
12	10/23/12 13:41:08.875	E¥:60	EXTERNAL	Device reset			
13	10/23/12 13:41:34.023	E¥:61	SELF-CHECK	Basic setup		Reset	
14	10/23/12 13:41:34.023	E¥:62	SELF-CHECK	Critical error			
15	10/23/12 13:41:44.099	E¥:63	EXTERNAL	IRIG-B: No signal			
16	10/23/12 13:47:46.728	E¥:64	COMM	Diagnostics		Cleared	
17	10/23/12 13:48:08.649	E¥:65	COMM	Locale setup		Setup change	
18 19	10/23/12 13:48:56.976	E¥:66 E¥:67	EXTERNAL	Power down Power up			
20	10/23/12 13:49:31.001						
20	10/25/12 11:50:06.239	E¥:68 E¥:69	EXTERNAL	Power down Power up			
21	10/25/12 11:59:13.001 10/25/12 13:07:34.867	E¥:69 E¥:70	COMM	DNP setups		Setup change	
22	10/25/12 13:07:34.875	EV:70	COMM	DNP setups		Setup change	
23	10/25/12 13:07:34.884	E¥:71	COMM	DNP setups		Setup change	
24				DNP event setpoint		Setup change	
25	10/25/12 13:07:35.352 10/25/12 13:17:52.268	E¥:73 E¥:74	SELF-CHECK COMM	RO setup		Setup change	
20	10/25/12 13:17:52.276	E¥:74	COMM	RO setup		Setup change	
28	10/25/12 13:17:52.286	E¥:75	COMM	RO setup		Setup change	
20	10/25/12 13:17:52.294	E¥:70	COMM	RO setup		Setup change	
30	10/25/12 13:17:52.302	E¥:78	COMM	RO setup		Setup change	
31	10/25/12 13:17:52:302	E¥:79	COMM	RO setup		Setup change	
32	10/25/12 13:17:52:320	E¥:80	COMM	RO setup		Setup change	
33	10/25/12 13:17:52:320	EV:81	COMM	RO setup		Setup change	
34	10/25/12 13:17:32:323	EV:82	COMM	RO setup		Setup change	
34	10/25/12 13:10:40:515	E1.02 FIL00	COMM			C-L	
Ready							

10/25/12 14:18:04

Selecting Primary and Secondary Units

Voltages and currents can be displayed in primary or secondary units. To select units for your data views, click on the monitor window with the right mouse button, select Options, select the desired units for voltages and currents, and then click OK.

Filtering and Sorting Events

You can use filtering to find and work with a subset of events that meet the criteria you specify. Click on the Filter button f_{∞} , or click on the report window with the right mouse button and select "Filter...". Check the causes of events you want to display, and then click OK. PAS temporary hides rows you do not want displayed.

To change the default sorting order based on the date and time, click on the Sort button 24, or click on the report window with the right mouse button and select "Sort...", check the desired sort order, and then click OK.

Linking to Waveforms and Data Records

If you programmed a setpoints to log setpoints operations to the Event log and the setpoints can trigger the Waveform or Data recorder, PAS automatically establishes links between the event and other database records where it finds a relationship with the event. Waveforms recorded at the time of the event are always linked to this event, even if the waveform was triggered by another source.

The event ID for which PAS finds related data is blue colored. Click on the colored event ID to check a list of the event links. Click on a list item to move to the related waveform or data log record.

Viewing the IEC 61000-4-30 Profile log file

IEC 61000-4-30 Profile log file is displayed in a tabular view, one 10 minutes time per row. PAS loads the first section entire database table to a window – the IEC 61000-4-30 RMS-Power Profile only, a total of 105 parameters per row, so that you can scroll through the entire log to view its contents.

🔳 Da	ta Log 11 - PM180																					
2	0 🖬 H 🔺 🕨 H	🖗 🐐	81	8																		
							PI	M180 IEC (61000-	4-30 - RMS	Power Pro	ofile 1	5-04-19 13:8	50:51								,
No.	Date/Time	Event	V1	V1 MAX	V1 MIN	V2	V2 MAX	V2 MIN	V 3	V3 MAX	V3 MIN	V4	V4 MAX	V4 MIN	V12	V12 MAX	V12 MIN	V23	V23 MAX	V23 MIN	V31	V31 MAX
1	16-04-19 11:40:00.000		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	16-04-19 11:50:00.000		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	16-04-19 12:00:00.000		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	16-04-19 12:10:00.000		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	16-04-19 12:20:00.000		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	16-04-19 12:30:00.000		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7	16-04-19 12:40:00.000		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
8	16-04-19 12:50:00.000		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9	16-04-19 13:00:00.000		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	16-04-19 13:10:00.000		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11	16-04-19 13:20:00.000		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12	16-04-19 13:30:00.000		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13 14	16-04-19 13:40:00.000 16-04-19 13:50:00.000		0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
<																						>
Ready																						

The remaining sections can only be viewed using retrieving recorders files process.

Look in:	Logs		- 🕂 🖻 🛨		Tables:	
Auick access	PM135 PR PM135 PR PM135 PR PM180.md PM180_LC	O_LOGS.mdb O_WF.mdb O_WF8.mdb db DGS.mdb MICRON_WF.mdb P/9G.mdb F 7.mdb	Date modified 30/04/2018 15:09 07/04/2019 11:25 19/07/2018 14:46 15/04/2019 15:02 15/04/2019 12:14 15/04/2018 12:53 23/04/2018 15:51 01/04/2019 08:22 26/10/2017 10:20 12/07/2018 08:57	Type File folder MDB File MDB File MDB File MDB File MDB File MDB File MDB File	Fault Log IEC 61000-4-30 - Harmonic Current A IEC 61000-4-30 - Harmonic Current B IEC 61000-4-30 - Harmonic Current C IEC 61000-4-30 - Harmonic Voltage A IEC 61000-4-30 - Harmonic Voltage B IEC 61000-4-30 - Harmonic Voltage C IEC 61000-4-30 - Interharmonic Current A IEC 61000-4-30 - Interharmonic Current B IEC 61000-4-30 - Interharmonic Current C IEC 61000-4-30 - Interharmonic Voltage C IEC 61000-4-30 - Interharmonic Voltage B IEC 61000-4-30 - Interharmonic Voltage C IEC 61000-4-30 - Interharmonic Voltage C IEC 61000-4-30 - RMS-Power Profile Waveform Loa 8 IEC 61000-4-30 - PQ Profile	
Network	File name:	PM180.mdb Access Database (*.mdb)	<u> </u>	> Open Cancel	Delete	

Viewing the Sequence-of-Events Log

SOE log files are displayed in a tabular view, one event per row. You can make your SOE reports more informative by providing extended event point identification and status descriptions (see <u>Adding Point and Status Labels to the SOE Log</u>).

	🛛 X 🖻 🖬	🕼 🗊 😭 🔗 SA30	0	_	• 🛤 • 📧 📨 🗙 🙁 🔫 📼
50	E Log - North 4				_ []]
	1 🕴 😭 😚)) H H H H H H H H H H H H H H H H H H			
		Norti	n 4 Sequence of Eve	ents 10/13/06 13:44:14	
Νο.	ID	Date/Time	Point	Status	Description
34		03/25/04 15:46:10.603		OPEN	
35	CLAY ST	03/25/04 15:46:10.637		TRIP	36M OVER CURRENT DELAY TRIP
36		03/25/04 15:46:10.644		CLOSED	
37	CLAY ST	03/25/04 15:46:10.725		RESET	36M OVER CURRENT DELAY RESET
38		03/25/04 15:46:10.737		OPEN	
39 40	TRANSM	03/25/04 15:46:11.316		ALARM	TRANSFORMR # 2 OVER TEMP
4U 41	TRANSM	03/25/04 15:46:11.328 03/25/04 15:46:11.466		CLOSED NORMAL	TRANSFORMER #2 NORMAL
+1 42	TRANSFI	03/25/04 15:46:11.466		OPEN	
+ <u>2</u> 43	TRANSM	03/25/04 15:46:11.920		CLOSED	TOC RESET - FEEDER LLC-1
44	IKANSPI	03/25/04 15:46:11.928		CLOSED	
45	TRANSM	03/25/04 15:46:12.075		OPEN	TOC LOCKOUT - FEEDER LLC-1
46		03/25/04 15:46:12.088		OPEN	
47	LOWELL	03/25/04 15:46:12.525		ALARM	CONDENSOR PUMP OVERLOAD
48		03/25/04 15:46:12.537		CLOSED	
49	LOWELL	03/25/04 15:46:12.696		NORMAL	CONDENSOR PUMP NORMAL
50		03/25/04 15:46:12.703	RO1	OPEN	
51	LOWELL	03/25/04 15:46:12.704	DI8:59271	ALARM	CONDENSOR PUMP OVERLOAD
52	LOWELL	03/25/04 15:46:12.708	DI8:59271	NORMAL	CONDENSOR PUMP NORMAL
53		03/25/04 15:46:12.711	RO1	CLOSED	
54		03/25/04 15:46:12.720	RO1	OPEN	
55	LOWELL	03/25/04 15:46:13.904	DI9:59272	ALARM	OIL TEMP ALARM - XFMER #2
56		03/25/04 15:46:13.911		CLOSED	
57	LOWELL	03/25/04 15:46:14.033		NORMAL	OIL TEMP NORMAL - XFMER #2
58		03/25/04 15:46:14.044		OPEN	
59	NEWARK	03/25/04 15:46:14.492		TRIP	BREAKER 33M - EM INST TRIP
60		03/25/04 15:46:14.503		CLOSED	
61	NEWARK	03/25/04 15:46:14.683		RESET	BREAKER 33M - EM INST RESET
62		03/25/04 15:46:14.694		OPEN	
63	NEWARK	03/25/04 15:46:15.062		ALARM	Under Voltage Alarm <108 VAC
64	NEWADZ	03/25/04 15:46:15.070		CLOSED	Nalkaga Dakura ka Narasal > 12004C
65 66	NEWARK	03/25/04 15:46:15.246		OPEN	Voltage Return to Normal >120VAC
67	DELMAR	03/25/04 15:46:15.253			
68	DELMAK	03/25/04 15:46:15.579 03/25/04 15:46:15.588		OPEN CLOSED	BREAKER 37M TRIP
	Log Files\North4.		KU1	LUJLV	

Notice that events marked with an asterisk have a timestamp synchronized at one millisecond with the satellite GPS clock.

Filtering and Sorting Events

To filter events, click on the Filter button f_{∞} , or click on the report window with the right mouse button and select "Filter...", check the event source points you want to display, and then click OK.

Filter	×
Check All	🗖 Clear All
 ✓ Digital In ✓ Relays ✓ Faults ✓ Setpoint 	
OK	Cancel

To change the event sorting order, click on the Sort button $2\downarrow$, or click on the report window with the right mouse button and select "Sort...", check the desired sort order, and then click OK.

Linking to Waveforms, Fault Log and Data Records

Event points, for which PAS finds related data in other database records, are blue colored. Click on the colored event point with the left mouse button to check a list of the event links. Click on a list item to move to the related waveform or fault log record.

Viewing the Power Quality Event Log

IEEE 1159 and EN 50160 PQ log files are displayed in a tabular view, one event per row. The IEEE 1159 PQ log normally contains both power quality and fault events. By default, the fault events are not displayed in the PQ report unless you enable them through the event filter (see below).

			PM180_USB PQ Log				
No.	Date/Time	Event	Fault Category	Phase	Fault Magnitude	PU	Duration
1	10/14/12 10:53:39.435	PQE7:9	Temporary overvoltage	V1	244.3	6.46	218:33:35.878190
2	10/14/12 10:53:39.435	PQE7:9	Temporary overvoltage	¥2	244.3	6.46	218:33:35.878190
3	10/14/12 10:53:39.435	PQE7:9	Temporary overvoltage	¥3	244.3	6.46	218:33:35.878190
4	10/14/12 14:50:01.000	PQE4:10	Flicker severity	V1 Plt	20		214:37:14.000000
5	10/14/12 14:50:01.000	PQE4:10	Flicker severity	¥2 Plt	20		214:37:14.000000
6	10/14/12 14:50:01.000	PQE4:10	Flicker severity	¥3 Plt	20		214:37:14.000000
7	10/23/12 13:27:15.314	PQE5:11	Voltage dip	¥1	0	0.00	0:00:00.040015
8	10/23/12 13:27:15.314	PQE5:11	Voltage dip	¥2	0	0.00	0:00:00.040015
9	10/23/12 13:27:15.314	PQE5:11	Voltage dip	¥3	1.1	0.03	0:00:00.040015
10	10/23/12 13:41:44.467	Waveform Log 7	10/23/12 13:27:15.254	¥1	234.1	6.19	0:07:12.031614
11	10/23/12 13:41:44.467	TQLAIM	remporary overvolcage	¥2	234.2	6.20	0:07:12.031614
12	10/23/12 13:41:44.467	PQE7:14	Temporary overvoltage	¥3	233.9	6.19	0:07:12.031614
13	10/23/12 13:48:56.499	PQE5:15	Voltage dip	¥1	1	0.03	0:00:00.380108
14	10/23/12 13:48:56.499	PQE5:15	Voltage dip	¥2	1	0.03	0:00:00.380108
15	10/23/12 13:48:56.499	PQE5:15	Voltage dip	¥3	0	0.00	0:00:00.380108
16	10/23/12 13:49:41.455	PQE7:17	Temporary overvoltage	¥1	241.2	6.38	46:00:24.340808
17	10/23/12 13:49:41.455	PQE7:17	Temporary overvoltage	¥2	241.4	6.39	46:00:24.340808
18	10/23/12 13:49:41.455	PQE7:17	Temporary overvoltage	V 3	241.6	6.39	46:00:24.340808
19	10/23/12 17:40:00.000	PQE4:18	Flicker severity	V1 Plt	20		42:10:06.000000
20	10/23/12 17:40:00.000	PQE4:18	Flicker severity	V2 Plt	20		42:10:06.000000
21	10/23/12 17:40:00.000	PQE4:18	Flicker severity	V3 Plt	20		42:10:06.000000
22	10/25/12 11:50:05.796	PQE5:19	Voltage dip	¥1	0	0.00	0:00:00.290098
23	10/25/12 11:50:05.796	PQE5:19	Voltage dip	¥2	0	0.00	0:00:00.290098
24	10/25/12 11:50:05.796	POE5:19	Yoltage dip	¥3	1.1	0.03	0:00:00.290098
25	10/25/12 13:36:13.474	POE7:22	Temporary overvoltage	¥1	234	6.19	0:01:57.714312
26	10/25/12 13:36:13.474	POE7:22	Temporary overvoltage	¥2	234	6.19	0:01:57.714312
27	10/25/12 13:36:13.474	PQE7:22	Temporary overvoltage	¥3	233.9	6.19	0:01:57.714312
28	10/25/12 13:38:11.188	PQE5:23	Voltage dip	¥1	0	0.00	0:00:00.270665
	10/25/12 13:38:11.188	PQE5:23	Voltage dip	¥2	1.1	0.03	0:00:00.270665
29		PQE5:23	Voltage dip	¥3	Ω	0.00	0:00:00.270665

Selecting Primary and Secondary Units

Voltages and currents can be displayed in primary or secondary units. To select units for your report, click on the report window with the right mouse button, select Options, select the desired units for voltages and currents, and then click OK.

Filtering and Sorting Events

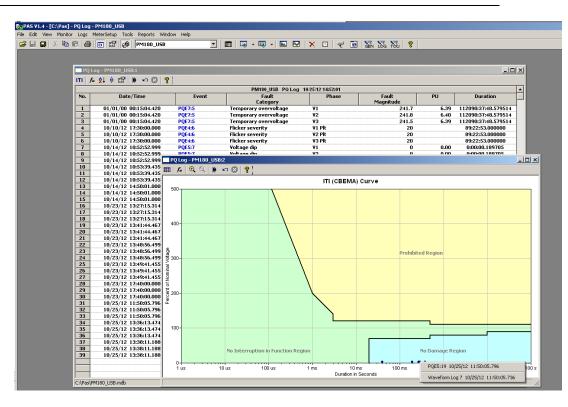
To filter events, click on the Filter button f_{∞} , or click on the report window with the right mouse button and select "Filter...", check the categories of events you want to display, and then click OK.

To change the default event sorting order, click on the Sort button $2\downarrow$, or click on the report window with the right mouse button and select "Sort...", check the desired sort order, and then click OK.

			PM180_USB PQ Log	10/25/12 1	4:48:41			
No.	Date/Time	Event	Fault Category	Pha	ase	Fault Magnitude	PU	Duration
1	10/14/12 10:53:39.435	PQE7:9	Temporary overvoltage	٧1		244.3	6.46	218:33:35.878190
2	10/14/12 10:53:39.435	PQE7:9	Temporary overvoltage	¥2		244.3	6.46	218:33:35.878190
3	10/14/12 10:53:39.435	PQE7:9	Temporary overvoltage	¥3		244.3	6.46	218:33:35.878190
4	10/14/12 14:50:01.000	PQE4:10	Flicker severity	¥1 Pİt		20		214:37:14.00000
5	10/14/12 14:50:01.000	PQE4:10	Flicker severity	¥2 Pİt		20		214:37:14.00000
6	10/14/12 14:50:01.000	PQE4:10	Flicker severity	¥3 Pİt		20		214:37:14.000000
7	10/23/12 13:27:15.314	PQE5:11	¥oltage dip	¥1		0	0.00	0:00:00.040015
8	10/23/12 13:27:15.314	PQE5:11	¥oltage dip	¥2		n	0.00	0:00:00.040015
9	10/23/12 13:27:15.314	PQE5:11	¥oltage dip	٧3	Filter		× p.03	0:00:00.040015
10	10/23/12 13:41:44.467	PQE7:14	Temporary overvoltage	¥1			5.19	0:07:12.031614
11	10/23/12 13:41:44.467	PQE7:14	Temporary overvoltage	¥2		Check All 🛛 🗌 Clear A	6.20	0:07:12.031614
12	10/23/12 13:41:44.467	PQE7:14	Temporary overvoltage	٧3	_		5.19	0:07:12.031614
13	10/23/12 13:48:56.499	PQE5:15	Voltage dip	¥1		Power frequency	0.03	0:00:00.380108
14	10/23/12 13:48:56.499	PQE5:15	¥oltage dip	¥2		Voltage variations	0.03	0:00:00.380108
15	10/23/12 13:48:56.499	PQE5:15	¥oltage dip	¥3		Rapid voltage changes	D.00	0:00:00.380108
16	10/23/12 13:49:41.455	PQE7:17	Temporary overvoltage	¥1		Flicker severity	5.38	46:00:24.340808
17	10/23/12 13:49:41.455	PQE7:17	Temporary overvoltage	¥2			5.39	46:00:24.340808
18	10/23/12 13:49:41.455	PQE7:17	Temporary overvoltage	¥3		Voltage dips	6.39	46:00:24.340808
19	10/23/12 17:40:00.000	PQE4:18	Flicker severity	¥1 Pİt				42:10:06.00000
20	10/23/12 17:40:00.000	PQE4:18	Flicker severity	¥2 Pİt		Temporary overvoltages	s	42:10:06.000000
21	10/23/12 17:40:00.000	PQE4:18	Flicker severity	¥3 Pİt		Transient overvoltages		42:10:06.000000
22	10/25/12 11:50:05.796	PQE5:19	Yoltage dip	¥1		Voltage unbalance	D.00	0:00:00.290098
23	10/25/12 11:50:05.796	PQE5:19	Voltage dip	¥2			D.00	0:00:00.290098
24	10/25/12 11:50:05.796	PQE5:19	Yoltage dip	¥3		Harmonic voltage	0.03	0:00:00.290098
25	10/25/12 13:36:13.474	PQE7:22	Temporary overvoltage	¥1		Interharmonic voltage	5.19	0:01:57.714312
26	10/25/12 13:36:13.474	PQE7:22	Temporary overvoltage	¥2		Mains signaling voltage	5.19	0:01:57.714312
27	10/25/12 13:36:13.474	PQE7:22	Temporary overvoltage	¥3			5.19	0:01:57.714312
28	10/25/12 13:38:11.188	PQE5:23	Yoltage dip	¥1			0.00	0:00:00.270665
29	10/25/12 13:38:11.188	PQE5:23	Yoltage dip	¥2		OK Cancel	0.03	0:00:00.270665
30	10/25/12 13:38:11.188	PQE5:23	Yoltage dip	¥3			D.00	0:00:00.270665

Linking to Waveforms and Data Records

PQ events for which PAS finds related links are blue colored. Click on the colored event ID to check a list of the event links. Click on a list item to move to the related waveform or data log records. Data log records associated with the event are taken into a separate window for easy viewing and trending.


Retrieving Waveforms Online

If you programmed the PQ recorder to record waveforms on power quality events, you can upload the waveforms related to a specific event online if they have not yet been retrieved and stored to the database on your PC. Events for which PAS did not find a corresponding waveform in the database are still black colored. Click on the event ID, click on the "Retrieve Waveform" prompt, and then point to a database to which you want the waveform to be stored.

Viewing the ITI (CBEMA) Curve

Impulsive transients and short-duration voltage variations (sags and swells) can be viewed as magnitude/duration pairs on the ITIC (the Information Technology Industry Council, formerly CBEMA) curve chart. To view an ITI curve chart, click on the "ITI" button on the window toolbar.

To view the event details, click on the event point with the left mouse button. To directly move to the related power quality report entry or to a waveform record, click on the corresponding list item with the left mouse button.

Viewing the IEEE 1159 Statistics Report

PAS can generate IEEE 1159 statistics reports on the collected power quality event data. To get an IEEE 1159 statistics report, select "IEEE 1159 Statistics" from the Reports menu, point to the database where you stored the retrieved power quality log data, and then click Open.

Open	<u>? ×</u>
Look in: 🔁 Log Files 💽 🗢 🖻 📸	Tables:
I 2KV SUBSTATION	PQ Log
Imp01	
North2	
図 north3_220906 図 North4	
Power 10	
File name: North2 Open	PQ Log
Files of type: Access Database (*.mdb)	Delete

The IEEE 1159 statistics is reported within the selected time range on either a weekly, or yearly basis.

Statistics of power quality incidents for voltage imbalance, harmonics, flicker and frequency variations are given on a per week basis. The report shows the number of incidents, and a total time and a percentage of the observation time within which the characteristic exceeds the standard limit.

For voltage transients, sags, swells and interruptions, the report gives the yearly statistical data classified by voltage magnitude and duration.

An example of the IEEE 1159 statistics report is shown in the following picture.

VIEWING LOG FILES

; 🖬 📵	¥ 🖻 🕻	18	🖬 😭	0	Nort	:h 4			•			- 🐺	-		₩
IEEE 1159	Power Qua	ity Rep	port												_
lorth 2												Wed, (Oct 18	8,2006	3
				IEEE 1			Quality Repor 25/09/06	nt							
					-		Transients								_
	ot Magnitude %Un	(u),	Polyph	ase Inci	dents		V1 Incidents	3	V2	Incidents		V31	ncide	nts	_
21709706 - 2 1 > 20	5/09/06		0				D		0		0	1			_
i> 50			2						1						_
≻100			2				D		0		2	2			-
> 150			2			1	2		0		0)			_
> 200			0			(D		0		0)			_
				Voltag	e Saç	js an	d Undervoltag	es							
Residua	l Voltage (u), %Un		Instantar 0.5-30 c				/lomentary, cycles - 3 s		Tempo 3s-			Under ≻1	volta <u>c</u> 1 min	je,	_
21/09/06 - 2	5/09/06						-								_
ı <= 90		4			2			4			0				_
<= 85		0			0			0			0				
i <= 70		0			0			0			0				_
ı <= 40		2			0			1			0				_
				Voltag	e Sw	ells a	nd Overvoltag	jes							
Magnitu %			istantaneou:).5-30 cycle				n en tary, cles - 3 s		Tempor 3s-1			Overv ≻1	oltage min	e,	
21/09/06 - 2	5/09/06														_
i > 110		0			0			4			1				
1>120		0			3			2			0				_
ı≻140 ı≻160		5			0 2			0 4			0				_
ג≥ 160 ג≻ 200		0			20			4			0				_
		ļ <u> </u>						-							_
From	То		Incidents	Tota	IDura	Flic ation,	ker Perce	ent of		Wors	t-case		Max	Pst	_
				h:	m:s:m	ns	Observatio			Ph	ase				_
21/09/06	23/09/06	1		00:00:3			0.0			V1			25.0		_
4/09/06	25/09/06	3		00:25:2	:3:000	J	1.3			V1			45.3	35	_

Changing the Report Time Range and Contents

Click on the report with the right mouse button, select "Options...", select the required time range, check the voltage characteristics to be included in the report, and then click OK.

Options	×
From 9/21/2006 💌	To 9/25/2006 💌
Impulsive Transient Voltage Sags and U Voltage Swells and Voltage Interruption Flicker	Indervoltages Overvoltages
ОК	Cancel

Customizing Reports

If you wish to add a logo image, header and footer to your reports:

1. Select "Report Setup..." from the Reports menu, or click on the report window with the right mouse button, and then select "Report Setup...".

Report Setup				X
Header Footer	Font			
🔽 Enabled				
Logo				
				iow
Page Header				
Header				×
	OK	Cancel	Apply	Help

- 2. Click on the Change button and select a logo image file. Check the "Show" box to include your logo into a report.
- 3. Type the header text in the Page Header box. Check the "Enabled" box to include the header into a report.
- 4. Click on the Footer tab and type the footer text. Check the "Enabled" box to include the footer into a report.
- 5. Click OK.

Both the header and the footer may contain more than one line of the text. Use the Enter button to move to the next line as usually.

Viewing EN50160 Statistics Reports

Viewing the EN50160 Compliance Report

To get the EN50160 Compliance report, select "EN50160 Compliance Statistics" from the Reports menu, point to the database where you stored the retrieved statistics data, uncheck the voltage characteristics' tables you do not want to be reported, and then click Open.

Open	<u>? ×</u>
Look in: 🧀 Pas 💽 🖛 🗈 📸 🕶 Tables:	
C_Log Files PM180_USB Samples	
Sites	
ТЕМР	
C USB	
<u>a</u> 20110329_01	
G EM720_204	
CM920 CM920 CM920 CM920	
File name: PM180_USB Open	
Files of type: Access Database (".mdb)	Delete

An example of the EN50160 compliance report is shown in the following picture.

	_					60 Complia								Ŀ	. 🗆
e <u>E</u> dit ⊻ ≇ 🗐 🖬		onitor (≥etup ≊ि	Tools Repo	orts <u>W</u> ir h 3	ndow	Hel	P	Ţ		🛛 🗸 🛛	- III	₩
EN50160) Comp	liance I	Repor	rt		1.40							•	•	_
North3													Wed	l, Oct 18, 2006	3
						EN50160 C 26/04	:ompliar 3/06 - 16;		por	t					
								r Frequency Compliance Min Freq							_
From	1	То		n-serv time, '		Compliance +/-1%, % of time	Complia +4/-6 % of t	1%,	MI	n Freque Hz	ency	Max Freq Hz		Standard Compliance	
26/08/06		26/08/06	; 7	7.85			100.00		49.56		:	50.17		Ok	_
27/08/06		02/09/06		00.00 100.00			100.00		49			50.21		Ok	_
03/09/06		09/09/06				00.00	100.00		49			50.16		Ok	_
10/09/06		16/09/06	; 10	00.00	9	9.96	100.00		49	.10		50.23		Ok	_
Annual rep							100.00		10	10				~	_
26/08/06		16/09/06		7.25	9	9.99	100.00		49	.10		50.23		Ok	_
						Volta	ige Vari	ations	•						
From	То		ervice e, %	+/-1	oliance 0%, f time	Compliance +10/-15%, % of time	V1 Min	V1 M	lax	V2 Min	V2 Max	× ∨3 Min	V3 Ma×	: Standard Compliance	•
26/08/06	26/08/0	6 77.7	8	100.0		100.00	23060	2371	9	22990	23663	23057	23748	Ok	_
27/08/06	02/09/0	6 100.0	00	100.0	0	100.00	22998	2367	1	22929	23596	23011	23703	Ok	_
03/09/06	09/09/0	6 100.0	00	100.0	0	100.00	23021	2370	1	22989	23608	23050	23712	Ok	
10/09/06 16/09/06 100.00					0	100.00	23002	2379	2	22949	23728	23010	23805	Ok	_
						Ve	oltage Di	ips							_
								Dur	ation (t)	-			1	_	
		ie (u), %			00ms	t < 500m		<1s	_	t < 3s	t < 3		t < 60s	t < 180s	_
85 < u < 9	-			1		0	0		0		0	0		0	_
70 < u <= 3 40 < u <= 1				2 0		0	0		0		0	0		0	_
40 < u <= u <= 40	10			U 1		3	0		0		0	0		0	_
u 40				,		10	0		0					0	_
	Dureti	on (t) < 1	0				e Interro on (t) < 1		IS			Duratio	n (t) ≻ 18	() e	_
0	Durati	on (t) <			0	Durau	on (t) < 1	005		0		Duratio	10		_
						Tempor	ary Over	volta	jes						-
										Duration					_
M	lagnitud	e (u), %l	Jn			t < 1 s			1 s =	<=t<1 n	nin		t >=	1 min	
ady													18/1	0/06 19:56:16	5

The standard compliance statistics is reported within the selected time range on a daily, weekly or yearly basis depending on the observation periods stated in the EN50160 for voltage characteristics. If the time range includes a number of the observation intervals, each interval's statistics is given in a separate row. For power frequency, both weekly and yearly compliance statistics are provided.

For characteristics provided with definite limits, the report shows a percentage of the observation time within which the characteristic complied with the standard, e.g. 98% of the observations in a period of one week, and the total compliance indicator.

For voltage characteristics provided with indicative values, the report gives the yearly statistical data classified by voltage magnitude and duration.

Selecting the Time Range

To change the time range or contents of the report, click on the report with the right mouse button, select "Options...", select the required time range, check the voltage characteristics to be included in the report, and then click OK.

Dptions	×								
From 6/21/2006 💌	To								
 ENS0160 - Flicker ENS0160 - Harmonic Voltage ENS0160 - Interharmonic Voltage ENS0160 - Power Frequency ENS0160 - Rapid Voltage Changes ENS0160 - Transient Overvoltages ENS0160 - Valtage Dips ENS0160 - Voltage Interruptions ENS0160 - Voltage Unbalance ENS0160 - Voltage Variations 									
(OK)	Cancel								

Customizing Reports

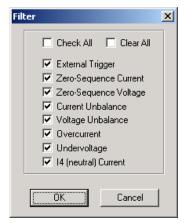
For information on how to add a logo image, the header and the footer to your reports, see <u>Customizing Reports</u> in the previous section.

Viewing the EN50160 Online Statistics Report

If you retrieved the EN50160 online statistics data, you can view the online report on the last retrieved statistics in the same manner as the EN50160 Compliance statistics report. Select "EN50160 Online Statistics" from the Reports menu, point to the database where you stored the retrieved online statistics, uncheck the voltage characteristics' tables that you do not want to be reported, and then click Open.

					Header							
M180										т	iesday, Ap	oril 16, 2019
				EN 5016):2010 On	line Re	enort					
					6-04-19 1							
				Table 1 -	Frequen	cy Var	iation					
					ency varia							
99.5%	99.5%	Max.	Max		99.5%		00%	99.		99.5%	100%	100%
value (low)	value (high)	value (-) value		in-comp- liant, %		n-com- ant, %	limit	(-)	mit (+)	limit (-)	limit (+)
0.00		0 0	.00	0.00		pin		-	-1.00	1.00	-6.00	4.00
				Table 2	- Voltage							
Voltage	95.0%	95.0%	Max.	Max.	95.0		100%		95.0%	95.0%	100%	100%
phase	value	value	value (-)	value (+			Non-co		limit (-)	limit (+)		
	(low)	(high)			plian		pliant,	%				
hase A	0.00	0.00	0.00	0.0								
hase B	0.00	0.00	0.00	0.0				_	-10.00	10.0	0 -15.0	0 10.00
hase C	0.00	0.00	0.00	0.								
			Т		apid Volt	-	_					
	Dhana A				age chang	e, %U	1		Dhara O			
Total	Phase A	Max.	Tot	Phase	Мах		т	otal	Phase C	Max.		Limit
change		value	chan		valu			inges		value		LIIIIL
	0			0					0			10.00
				Т	ble 4 - Fli	cker						
					Plt	ener						
	Phase A			Pha	ise B				Phas	e C		
95%												
value 0.00	value	value pliant, % value pliant, % value value pliant, % imit 0.00 0.00 0.00 0.00 0.00 1.00			limit 1 00							
0.00	0.00		0.0					0.00	0.	00		1.00
				Table 5	- Voltage		ance					
05	% value		Max. va	lue	Vunb, 9		n-complia	nt 9/			95.0% lii	nit
35	70 value	0.0	Max. va		0.0	NUI	I-Compila	in, 70			33.0 % III	2.0
		I										
				Tabl	e 6 - Volta THD, %u	-	D					
	Phase A			Pha	ise B				Phas	e C		
95%	Max.	Non-com-	95%	Max		n-com-	- 95	%	Max.		n-com-	95.0%
value	value	pliant, %	value	valu		ant, %	va	ue	value		ant, %	limit
0.0	0.0		0	.0	0.0			0.0	0	0.0		8.0
				Table 7	Harmon	ic Volt	ages					
					Harmon		-					
	Dh	ase A			Phase B				Dh	ase C		

Viewing the EN50160 Harmonics Survey Report


To view the EN50160 harmonics survey report on the collected statistics data, select "EN50160 Harmonics Survey" from the Reports menu, point to the database where you stored the retrieved statistics, uncheck the voltage channels which you do not want to be reported, and then click Open.

Viewing the Fault Log

Fault log files are displayed in a tabular view. PAS loads the entire database table to a window, so that you can scroll through the entire log to view its contents.

Filtering and Sorting Events

To filter events, click on the Filter button f_{∞} , or click on the report window with the right mouse button and select "Filter...", check the categories of events you want to display, and then click OK.

To change the sorting order, click on the Sort button 24, or click on the report window with the right mouse button and select "Sort...", check a desired sort order, and then click OK.

ê 🕻	🖬 X 🖻 🖻 🖪	😭 🛞 5A30	00	-	- 🔊	- 😺	🔛 🔛	X	1		GEN	107 201	?	
2 ↓	🕴 🖆 🕨 🗠 🙆 🤶													
				D Fault Log		6 12:57:10								Ī
0.	Date/Time	Event	Fault Category	Phase	e	Amp: Magnite		PU		olts nitude		PU	Duration	
5	07/22/03 12:54:50.717	FE5:15	Overcurrent	L3			8.97	1.79		65	5.1	0.98	0:00:00.066	ī
Б	07/22/03 12:56:28.883	FE5:16	Overcurrent	L1			0.73	0.15		68	3.6	1.03	0:00:00.066	
7	07/22/03 12:56:28.883	FE5:16	Overcurrent	L2			7.97	1.59		65	5.5	0.99	0:00:00.066	
3	07/22/03 12:56:28.883	FE5:16	Overcurrent	L3			8.56	1.71		65	5.0	0.98	0:00:00.066	
э (07/26/03 14:08:50.216	FE6:17	Undervoltage	L1			0.34	0.07		56	j.1	0.85	0:00:00.067	
D	07/26/03 14:08:50.216	FE6:17	Undervoltage	L2			0.11	0.02		65	5.4	0.99	0:00:00.067	
L	07/26/03 14:08:50.216	FE6:17	Undervoltage	L3			0.46	0.09		64	.5	0.97	0:00:00.067	
2	08/07/03 17:17:57.668	DI8:18	External Trigger	L1			0.62	0.12		67	7.9	1.02	0:00:02.638	
3	08/07/03 17:17:57.668	DI8:18	External Trigger	L2			0.59	0.12		68	3.0	1.02	0:00:02.638	
1	08/07/03 17:17:57.668	DI8:18	External Trigger	L3			0.62	0.12		67	7.0	1.01	0:00:02.638	
5	08/07/03 19:41:40.876	FE7:19	I4 (neutral) Current	L1			0.55	0.11		67	7.7	1.02	0:00:00.016	
5	08/07/03 19:41:40.876	Waveform Lor	7 08/07/03 19:41:40.777	L2			0.52	0.10		67	7.8	1.02	0:00:00.016	
7	08/07/03 19:41:40.876	110.13	14 (neural) current	L3			0.51	0.10		67	7.1	1.01	0:00:00.016	
3	08/07/03 19:41:40.908	FE1:20	Zero-seq. Current	L1			0.62	0.12		67	7.7	1.02	0:00:00.033	
3	08/07/03 19:41:40.908	FE1:20	Zero-seq. Current	L2			0.64	0.13		67	7.8	1.02	0:00:00.033	
)	08/07/03 19:41:40.908	FE1:20	Zero-seq. Current	L3			0.55	0.11		67	7.1	1.01	0:00:00.033	
L	08/07/03 19:41:40.943	FE7:21	14 (neutral) Current	L1			0.25	0.05		67	7.7	1.02	0:00:00.016	
2	08/07/03 19:41:40.943	FE7:21	14 (neutral) Current	L2			0.37	0.07		67	7.8	1.02	0:00:00.016	
3	08/07/03 19:41:40.943	FE7:21	14 (neutral) Current	L3			0.51	0.10		67	7.1	1.01	0:00:00.016	
1	08/11/03 15:08:51.651	FE1:22	Zero-sea. Current	L1			2.05	0.41		66	5.7	1.00	0:00:00.099	
5	08/11/03 15:08:51.651	FE1:22	Zero-sea. Current	L2			2.50	0.50		66	5.6	1.00	0:00:00.099	
5	08/11/03 15:08:51.651	FE1:22	Zero-seq. Current	L3			4.65	0.93		60).6	0.91	0:00:00.099	
7	08/11/03 15:08:51.751	FE7:23	14 (neutral) Current	L1			0.38	0.08		67	7.2	1.01	0:00:00.007	
3	08/11/03 15:08:51.751	FE7:23	14 (neutral) Current	L2			0.42	0.08		67	7.0	1.01	0:00:00.007	
	08/11/03 15:08:51.751	FE7:23	14 (neutral) Current	L3			0.46	0.09		66	j.4	1.00	0:00:00.007	
D	08/17/03 08:33:16.606	DI4:24	External Trigger	L1			0.59	0.12		67	.9	1.02	4:01:30.348	
	08/17/03 08:33:16.606	DI4:24	External Trigger	L2			0.76	0.15		69	9.6	1.05	4:01:30.348	
2	08/17/03 08:33:16.606	DI4:24	External Trigger	L3			0.71	0.14		68	3.7	1.03	4:01:30.348	
3	08/28/03 05:03:42.162	DI4:25	External Trigger	L1			0.49	0.10		68		1.03	3:39:26.324	
1	08/28/03 05:03:42.162	DI4:25	External Trigger	L2			0.46	0.09		68	3.5	1.03	3:39:26.324	
5	08/28/03 05:03:42.162	DI4:25	External Trigger	L3			0.48	0.10		67	7.6	1.02	3:39:26.324	
5	08/28/03 16:41:49.314	FE6:26	Undervoltage	L1			0.83	0.17		67	1.4	1.02	0:00:00.050	
1	08/28/03 16:41:49.314	FE6:26	Undervoltage	L2			0.95	0.19		67	7.5	1.02	0:00:00.050	
3	08/28/03 16:41:49.314	FE6:26	Undervoltage	L3			1.60	0.32		52	2.5	0.79	0:00:00.050	
	08/28/03 16:41:49.365	FE7:27	I4 (neutral) Current	L1			0.36	0.07		67	7.5	1.02	0:00:00.016	
)	08/28/03 16:41:49.365	FE7:27	I4 (neutral) Current	L2			0.41	0.08		67		1.01	0:00:00.016	
1	08/28/03 16:41:49.365	FE7:27	I4 (neutral) Current	L3			0.34	0.07			5.6	1.00	0:00:00.016	
2	08/28/03 16:43:51.434	FE1:28	Zero-seq. Current	L1			2.08	0.42		67		1.02	0:00:00.074	
3	08/28/03 16:43:51.434	FE1:28	Zero-seq. Current	L2			3.46	0.69			.2	0.92	0:00:00.074	
4	08/28/03 16:43:51.434	FE1:28	Zero-sea. Current	L3			2.38	0.48			5.2	1.00	0:00:00.074	

Ready

10/13/06 13:01:34

Selecting Primary and Secondary Units

Voltages and currents can be displayed in primary or secondary units. To select units for your data views, click on the report window with the right mouse button, select Options, select the desired units for voltages and currents, and then click OK.

Linking to Waveforms and Data Records

When displaying the fault report, PAS establishes links between the event and related waveforms and data log records. Fault events for which PAS finds related links are blue colored.

Click on the colored event ID with the left mouse button to check a list of the event links. Click on a list item to move to the related waveform or data log records. Data log records associated with the fault event are taken into a separate window for easy viewing and trending.

Viewing the Data Log

Data log files can be displayed in a tabular view, one data record per row, or in a graphical view as a data trend graph.

CHAPTER 13

Dat	a Log 1 - PM180_USB	_																-
			0				_	_	_									
) 🖻 H ◀ ト H 🛍 🌖) ED 🔽	8 8															
										5/12 14:59:5								
No.	Date/Time	Event	¥1	₩2	¥3	I1	12	13	k₩	kvar	k¥A.	PF	¥1 THD	¥2 THD	V3 THD	I1 THD		13 TI
26	10/16/12 21:30:00.008	SP1	234.8	235.9	236.1	0.01	0.01	0.01	0.001	0	0.001	-0.924	2.3	2.3	2.3	0	0	
27	10/16/12 21:45:00.003	SP1	235.5	236.1	236	0.01	0.01	0.01	0	0	0	-0.251	2.3	2.3	2.3		0	
28	10/16/12 22:00:00.006	SP1	234.4	234.5	234.5	0.01	0.01	0.01	0	0	0	0.628	2.4	2.3	2.3	0	0	
29	10/16/12 22:15:00.008	SP1	234.2	235	235.1	0.01	0.01	0.01		-0.001	0.001	-0.478	2.4	2.3	2.3			
30	10/16/12 22:30:00.010 10/16/12 22:45:00.003	SP1	234.8	235.4	235 235.1	0.01	0.01 N	0.01	0	0	0	-0.547	2.3	2.2	2.2	0 N	0	
31		SP1	234.4	235.5		0.01		0.01	0	0	0		2.5	2.3	2.3		0	
32	10/16/12 23:00:00.009	SP1 SP1	234.5 235.4	235.3 236	234.5 236	0.01	0.01	0	0	0	0	0.999	2.4 2.3	2.3	2.3 2.3	0	0	
33	10/16/12 23:15:00.000 10/16/12 23:30:00.003	SP1 SP1	235.4	236	236	0.01	0.01	0.01	0	0	0	0.999	2.3	2.4 2.4	2.3	0	0	
34	10/16/12 23:30:00.003	SP1 SP1	235.3	234.9	234.3	0.01	0.01	0.01	-0.001	-0.001	0.001	0.787	2.3	2.4	2.4	0	0	
36	10/17/12 00:00:00.006	SP1	235.0	235.7	235.4	0.01	0.01	0.01	-0.001	-0.001 N	0.001	-0.961	2.3	2.3	2.4	U N		
30	10/17/12 00:00:00:008	SP1	233.9	233.9	233.4	0.01	0.01	0.01	0	U N	0	-0.952	2.7	2.7	2.7	0	0	
38	10/17/12 00:30:00.003	SP1	233.9	235.9	234.1	0.01	0.01	0.01	0	0	0.001	-0.952	2.7	2.6	2.6	0		
39	10/17/12 00:30:00.005	SP1	234.7	235.9	234.3	0.01	0.01	0.01	0	0	0.001	0.403	2.7	2.0	2.0	0	0	
40	10/17/12 01:00:00.010	SP1 SP1	236.5	236	235.3	0.01	0.01	0.01	0	0		-0.447	2.9	2.0	2.0	0		
40	10/17/12 01:00:00.010	SP1	236.2	235.2	236.7	0.01	0.01	0.01	0.001	0	0.001	-0.447	2.9	2.8	2.9	0	0	
41 42	10/17/12 01:13:00.002	SP1	234.7	233.8	234.9	0.01	0.01	0.01	-0.001	0	0.001	0.987	2.0	2.8	2.0	0	0	
43	10/17/12 01:30:00.004	SP1	234.0	233.0	234.7	0.01	0.01	0.01	0.001	0	0.001	-0.884	2.9	2.0	2.9			
44	10/17/12 01:43:00:010	SP1	234.1	235.4	233.9	0.01	0.01	0.01	0	-0.001	0.001	0.387	3	2.9	2.9	0		
44	10/17/12 02:05:00:003	SP1	235.2	235.6	235.3	0.01	0.01	0.01	0	0.001	0.001	-0.445	2.9	2.9	2.5	0	0	
45	10/17/12 02:30:00.002	SP1	235.8	235.0	235.7	0.01	0.01	0.01	0	0.001	0.001	0.999	2.9	2.9	2.0		0	
40	10/17/12 02:45:00.009	SP1	236.4	236.3	235.9	0.01	0.01	0.01	0	0 N	0	0.461	2.9	2.9	3			
48	10/17/12 03:00:00.003	SP1	235.8	237.5	236.5	0.01	0.01	0.01	0	0	0	0.739	2.3	2.9	2.9	0	0	
49	10/17/12 03:15:00.003	SP1	235.8	236	235.3	0.01	0.01	0	0	0	0	-0.957	3	2.3	2.5	0	0	
50	10/17/12 03:30:00.005	SP1	235.1	234.5	234.2	0.01	0.01	0.01	ŏ	Ő	Ő	-0.880	3	2.9	2.9	Ő	Ő	
50	10/17/12 03:45:00.009	SP1	234.7	235.2	235.3	0.01	0.01	0.01	ŏ	ň	Ő	0.934	2.9	2.9	2.9	ŏ	Ő	
52	10/17/12 04:00:00.007	SP1	235.7	234.6	234.5	0.01	0.01	0.01	Ö	Ň	0	-0.396	3	3	3		0	
53	10/17/12 04:15:00.000	SP1	235.1	234.8	234.5	0.01	0.01	0.01	0	Ň	0	0.566	3	2.9	2.9	, N	0	
54	10/17/12 04:30:00.002	SP1	234.1	234.1	234	0.01	0.01	0.01	0	Ň	0	-0.481	3	2.9	2.9	0		
55	10/17/12 04:45:00.005	SP1	235.5	236.1	235.3	0.01	0.01	0.01	0	0	0	-0.031	2.9	2.9	2.9	0		
56	10/17/12 05:00:00.002	SP1	234	233.6	234	0.01	0.01	0.01	ŏ	Ő	Ő	-0.556	2.9	2.9	2.9	ŏ	Ő	
57	10/17/12 05:15:00.002	SP1	236.7	236.1	236	0.01	0.01	0.01	0.001	ŏ	0.001	-0.853	2.9	2.9	2.9	Ő	Ö	
58	10/17/12 05:30:00.001	SP1	235.2	234.7	234.4	0.01	0.01	0.01	0.001	0	0.001	0.796	2.9	3	2.9	Ū Ū	0	
59	10/17/12 05:45:00.008	SP1	235.1	235.4	234.7	0.01	0.01	0.01	0	0	0	-0.873	2.8	2.8	2.8	0	0	
60	10/17/12 06:00:00.005	SP1	234.2	234.3	233.6	0.01	0.01	0.01	-0.001	-0.001	0.001	0.644	2.9	2.8	2.8	0	0	
61	10/17/12 06:15:00.008	SP1	233.6	233.2	233.9	0.01	0.01	0	0	0	0	-0.981	2.7	2.6	2.7	Ő	0	
62	10/17/12 06:30:00.002	SP1	236.1	235	235.4	0.01	0	0	0	Ō	0	-0.149	2.7	2.7	2.8	0	Ō	
63	10/17/12 06:45:00.001	SP1	234.4	233.9	234	0.01	0.01	0.01	0	Ū	Ō	1	2.9	2.8	2.8	0	Ō	
64	10/17/12 07:00:00.007	SP1	233.3	233.4	234.3	0.01	0	0	-	- 0	-	1	2.7	2.7	2.7	- 0	- 0	
65	10/17/12 07:15:00.005	SP1	236	235.2	234.9	0.01	0.01	0.01		-0.001	0.001	0.505	2.2	2.3	2.3	- 0		

Viewing Data Trend

To view data in a graphical form, click on the Data Trend 🖾 button on the local toolbar.

To change the time range for your graph, click on the Time Range button
to on the local toolbar, and then select the desired date and time range.

Selecting Channels

To select desired data channels for your trend, click on the trend window with the right mouse button, select "Channels", check the channels you want displayed, and then click OK.

Customizing Line Colors and Styles

Trend lines for different channels can be shown in different colors using different line styles. To change the colors or line styles, click on the trend window with the right mouse button, select "Options...", click on the "Display" tab, adjust colors and styles for channels, and then click OK. You can also change the colors for the background and gridlines.

CHAPTER 13

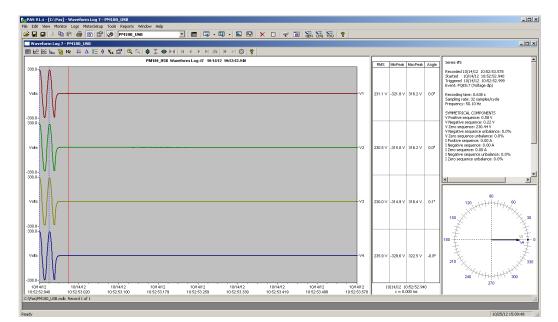
		-) • 🗳 🔛 🗙 🖸		100 0					
Data Log 1 - PM180_L											_19
1 🖽 👭 🛆 🗄 🏟	• 🖆 🔍 🍳 🍦 🗶		। 🕨 🗠 🕄 🤱								
				USB Data Log 1 10/25/12 1	15:04:22			<u>^</u>			
		dx=48:	39:15:369					1	Avg	Min	M
239.0- 223.0-	er and the second second second second second second second second second second second second second second s	and the second second second second second second second second second second second second second second second	manufacture	and the second second	an an an an an an an an an an an an an a	and water and a second	and the second second second second	-v1	231.9	230.9	23
¥ 239 0-			wound	and the second sec	fore the street of the street	and a second and a second	and the second s	*** v2	231.9	230.2	233
239.0- 223.0-	سچواصفاریک _{اریک} دانگاهگری		mound	and the second s	ann gan de trademie de trademie	and man and		*****¥3	231.8	230.3	23
0.00-								-11	0.01	0.01	0.0
1.00-								-12	0.00	0.00	0.0
1.00-								-13	0.00	0.00	0.0
1.000-								-104	0.000	0.000	0.0
1.000-								-kvar	-0.000	-0.001	0.0
1.000-								-kVA	0.000	0.000	0.0
	AN ALAN AND AND A		A A A A A A A A A A A A A A A A A A A	NAME AND A PROPERTY OF	WHAT IS A PROPERTY A	And Martin Martin	-	LIL PF	0.584	-0.217	-0.9
4.4-			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~		V1 THD	2.4	2.3	2
4.5-			·					-v2 THD	2.4	2.3	2
45-			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~				······································	2.4	2.3	2
10/10/12	10/12/12 10:54:22:508	10/14/12 08:03:45.008	10/16/12 05:13:07:508	10/18/12	10/19/12 23:31:52:509	10/21/12 20:41:15.009	10/23/12 17:50:37.509	10/25/12	From 10/1	0/12 13:4 0/12 15:1	5:00

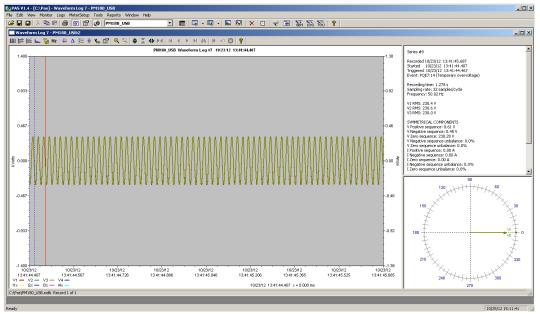
Using the Marker Lines

The trend window has two blue dashed marker lines. The left marker indicates the starting position and the right marker indicates the end position for calculating the average and peak values.

To change the marker position, click on the trend window with the right mouse button, select Set Marker, or click on the button on the window toolbar, and then click with left mouse button on the point where you want to put the marker. You can also drag both markers with the mouse, or use the right and left arrow keys on your keyboard to change the marker position (click on the trend pane with the mouse before using the keyboard, to allow the keyboard to receive your input).

Using a Zoom


You can use a horizontal and a vertical zoom to change size of your graph. Use the buttons on you local toolbar representing green arrowheads to zoom in and zoom out. One click gives you a 100-percent horizontal zoom. Two buttons give you a proportional zoom in both directions.


Delta Measurements

To measure the distance between two trend points, click on the Delta button Δ , then click on the first point, and then click on the second point. The first reference point is still frozen until you close and reopen Delta, while the second point can be placed anywhere within the trend line. You can measure a delta in both directions. To disable delta measurements, click on the Delta button once again.

Viewing Waveforms

Waveform data can be displayed in five different views. When you open a new file, PAS shows you a waveform graph showing non-overlapped waveforms. Each waveform window has a local toolbar from where you can open another window to examine the waveform in a different view.

You can open all five views together to analyze different properties of the waveform like a wave shape, waveform disturbance, unbalance, or spectrum. When you move to another waveform record, all views are updated simultaneously to reflect the changes.

To view overlapped waveforms, click on the button on the local toolbar; to view nonoverlapped waveforms, click on the button.

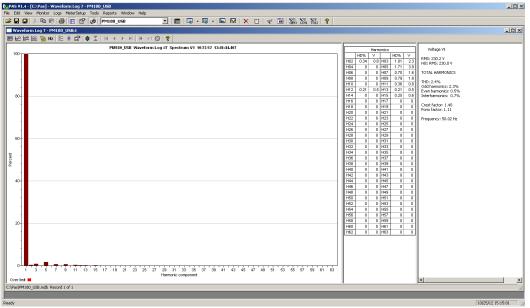
Waveform data is recorded in series that may contain many cycles of the sampled waveform. A waveform window displays up to 128 waveform cycles. If the waveform contains more cycles, the scroll bar appears under the waveform pane allowing you to scroll through the entire waveform.

Viewing an RMS Plot

PAS can show you a cycle-by-cycle RMS plot of the sampled AC waveforms. To open the RMS view, click on the kill button. The graph shows the RMS points updated each half cycle.

CHAPTER 13

C. PAS VI.4 - [Ci/Pas] - Waveform Log 7 - PM180_US8 Fiel Edit New Monitor Logs Metrificitup Tools Reports Window Help		×
☞ 및 및 X 및 플 플 플 플 및 PM180_US8 및 프 프 및 - 및 - 및 - 및 X 및 국 및 3% % % %		
Waveform Log 7 - PM180_USB:3		_O_X
Phi180_USB Waveform Log ≠7 RMS Plot 10/23/2 13:41:44.407	Avg Min Max	Series #9
	230.4 ∨ 230.4 ∨ 230.4 ∨	Racoded 10(23)12 (33-11-56.07 Standa (10)23)12 (33-11-64.07 Tragared 10)22(31) (33-11-64.07 Tragared 10)22(31) (33-11-64.07 Recording time: 1,278 Standard (time: 1,278 Standard (time: 1,278 Standard (time) (278 Frequency: 19),02 (time) Frequency: 19),02 (time)
200		
Volte	230.6 V 230.6 V 230.6 V	
2200-		
Vole	230.0 V 230.0 V 230.0 V	
2004 1 1902/02 1002/02 1002/02 1002/02 1002/02 1002/02 1002/02 1002/02 1002/02 1002/02 1002/02 1002/02 1002/02 102/02 1341:44.407 1341:44.557 1341:44.525 1341:44.506 1341:45.066 1341:45.206 1341:45.555 1341:4555 1341	10/23/12 13:41:44.407 x = 0.000 ms	▲ >
Jeady Control of Contr		10/25/12 15:13:52


Viewing a Frequency Plot

To view a cycle-by-cycle frequency plot of the sampled voltage waveforms, click on the Hz button.

Viewing a Spectrum Chart

Click on the **button** to view a spectrum chart for the selected waveform channel. To change a channel, click on the window with the right mouse button, select "Channels...", check the channel you want displayed, and then click OK. PAS provides voltage, current, active power and reactive power spectrum charts.

A spectrum is calculated over four cycles of the waveform beginning from the point where the left marker line is located in the open waveform view. If both waveform views are open, PAS gives the priority to the overlapped waveform view.

The order of the highest displayed harmonic component is equal to the half sampling rate at which the waveforms are sampled minus one. If the waveform was sampled at a rate of 256 samples per cycle, 63 harmonics are available. With 32 samples per cycle, only 15 harmonics are calculated, while others will be zeros.

PAS can give you indication on whether harmonic levels in the sampled waveforms exceed compliance limits defined by the power quality standards or local regulations.

To review or change harmonic limits:

- 1. Click on the spectrum window with the right mouse button and select "Limits...".
- 2. Select a harmonics standard, or select "Custom" and specify your own harmonic limits.
- 3. Check the Enabled box to visualize harmonic faults on the spectrum graph and in harmonic tables.

Harmonics that exceed selected compliance levels are colored in red on the graph and in the tables.

oltage				_	Current				
Har	m. Di	stortio	n, %		Harr	n. Emi	ssion,	Amp	
H02	2.0	H03	5.0		H02	28.9	H03	48.1	
H04	0.1	H05	6.0		H04	9.0	H05	28.9	
H06	0.5	H07	5.0		H06	3.0	H07	41.2	
H08	0.5	H09	1.5		H08	7.2	H09	9.6	
H10	0.5	H11	3.5		H10	5.8	H11	39.4	
H12	0.5	H13	3.0		H12	1.2	H13	27.8	
H14	0.5	H15	0.5	1	H14	2.1	H15	1.4	
H16	0.5	H17	2.0		H16	1.8	H17	13.6	
H18	0.5	H19	1.5		H18	0.8	H19	9.1	
H20	0.5	H21	0.5		H20	1.4	H21	0.7	
H22	0.5	H23	1.5	1	H22	1.3	H23	7.5	
H24	0.5	H25	1.5	1	H24	0.6	H25	4.0	
H26	0.5	H27	1.5	-	H26	1.1	H27	0.5	•
Standa	ard				Stand	ard			
EN 50	160 40	00V-36.	5kV	•	G5/4	2001 4	00V		•
🗹 En	abled		Defaul	t	🔽 Er	abled		Default	

Viewing a Spectrum Table

Click on the IIII button on the local toolbar to display the harmonics spectrum in a tabular view for a selected phase or for all phases together.

The spectrum table shows voltage, current, active power and reactive power harmonic components both in percent of the fundamental and in natural units, and harmonic phase angles.

CHAPTER 13

V% 1% P% 0% Angle V A kW kvar H01 100.0 0		: 😤 📖 🥍 Ha	: 🗄 🕴 🗳 📔			1#7 Spectrum I 1	18/23/12 13:41:44.4	07			
Heil 100.0 0<			I%						kW		
H03 L0 0 0 0* 2.3 0 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th>											-
H04 0											
HOS 1.7 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
HOE 0 0 0 0 0 0 0 0 0 1/2<											
H08 0											Interharmonics: 0.7%
H09 0.8 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
H10 0											Form factor: 1.11
H11 0.4 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Current I1x</td>											Current I1x
IIII 0 0.2 0<									0	0	
H13 0.2 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
H15 0.3 0 0 0 0 0 0 0 0 10th Instruments: 0.0% Interfaments: 0.0% I											Odd harmonics: 0.0%
H15 0											
H17 0											
1113 0	H17										
Int3 0											
H21 0											
H22 0 0 0 0 0 0 0 0 Actve power: 0 kvar H23 0											Power L1
H23 0 0 0 0 0 0 0 Read/up power.0 Moor H24 0 0 0 0* 0 0 0 0 1 Read/up power.0 Moor H25 0 0 0 0* 0 0 0 Frequency: 50.02 Hz H27 0 0 0 0* 0 0 0 0 0 H27 0 0 0 0* 0	H22	0	0	0	0	0°	0	0	0	0	Active power: 0 kW
H25 0 0 0 0* 0 0 0 0 H25 0 0 0 0* 0 0 0 0 1 Prequency: 50.02 Hz 1 H27 0 0 0 0* 0 0 0 0 1											Reactive power: 0 kvar
Intended 0											Frequency: 50.02 Hz
H27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											
										0	
and the second second second second second second second second second second second second second second second	H28	0	0	0	0	0°	0	0	0	0	
C:\Pas PM180_LV58.mdb Record 1 of 1	C:\Pas)	PM180_USB.mdb R	ecord 1 of 1								li.

To change a phase, click on the window with the right mouse button, select "Options...", check the phase you want displayed, and then click OK.

Waveform Options

Scrolling through Waveforms

The status bar at the bottom of the window shows you how many records the log file contains. Use green arrowheads **I • • I** on the window toolbar to scroll through records.

Selecting Waveform Channels

A single waveform record may contain up to 56 waveforms including AC, VDC, digital and analog input channels, which can be displayed all together in a non-overlapped waveform view.

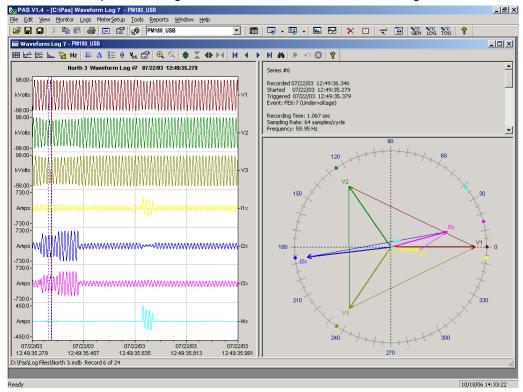
annels Channels					
Check All	Check All	Check All Clear All	Check All	Check All	Symmetrical Components
V12 V11x V23 V12x V23 V12x	다 DI1 다 DI9 다 DI2 다 DI10 다 DI3 다 DI11	Di17 Di25	DI33 DI41		Volts
V4 V 14x	I DI3 I DI12 I DI4 I DI12 I DI5 I DI13	DI20 DI28	DI36 DI44		
□ 12 □ NONE □ 13 □ 14	DI6 DI14 DI7 DI15 DI8 DI16	D122 D130 D123 D131 D124 D132	D138 D146 D139 D147 D140 D148	□ AI6 □ AI14 □ AI7 □ AI15 □ AI8 □ AI16	
				Cancel	Apply Help

To select the channels you want to view on the screen, click on the waveform window with the right mouse button, select "Channels...", check the channels you want displayed, and then click OK. Checkboxes for channels that are not present in the waveform are dimmed.

Selecting the Time Axis

The horizontal axis can be displayed either in absolute time with date and time stamps, or in milliseconds relatively to the beginning of a waveform. To change the time units, click on the

waveform window with the right mouse button, select "Options...", click on the "Axes" tab, select the desired units, and then click OK.


Customizing Line Colors and Styles

Channel waveforms are displayed using different colors and line styles. To change the colors or line styles, click on the waveform window with the right mouse button, select "Options...", click on the Display tab, adjust colors and styles, and then click OK. You can also change the waveform background and gridlines color.

Detions Units Axes Phasor Display	X
Graph Properties	
Channels:	Color:
V1	Maroon 👻
V2	Style:
V3	
V4	
	Thickness:
12	1 point 💌
14	Background:
IIx	White -
I2x	
I3x	Grid Visible
I4x	
VDC	📕 🗖 White Frame
OK Cancel	Apply Help

Viewing Phasor Diagrams

The phasor diagrams show you the relative magnitudes and angles of the three-phase voltage and current fundamental component. All angles are shown relative to the reference voltage channel.

To change the reference channel, click on the waveform window with the right mouse button, select "Options...", click on the "Phasor" tab, check the channel you want to make a reference channel, and then click "OK".

Options				×
Units Axes	Phasor Disp	lay		
	Ref	erence VI V2 V3	I⊄ Triangle	
	OK	Cancel	Apply	Help

If you leave the Triangle box checked, PAS connects the ends of the voltage and current vectors showing you three-phase voltage and current triangles. This is useful when analyzing voltage and current unbalances.

Phasor diagrams are calculated over one waveform cycle pointed to by the left marker line. As you move the marker, the phasor diagrams are updated reflecting the new marker position.

Viewing Symmetrical Components

Waveform views have an additional pane at the right where PAS displays the symmetrical components for voltages and currents, calculated for the point indicated by the left marker line. To enable or disable the symmetrical components, click on the waveform window with the right mouse button, select "Options...", check or uncheck the "Symmetrical components" box on the "Channels" tab, and then click OK.

Selecting Primary and Secondary Units

Voltages and currents can be displayed in primary or secondary units. To select units for your waveforms, click on the waveform window with the right mouse button, select "Options...", select the desired units for voltages and currents on the Channels tab, and then click OK.

Using the Marker Lines

Waveform and RMS panes have two blue dashed marker lines. The left marker indicates the position from where data is taken to calculate the harmonics spectrum and phasor diagrams, and also as the starting position for calculating the RMS, average and peak values. The right marker indicates the end position for calculating the RMS, average and peak values. The minimum distance between the two markers is exactly one cycle.

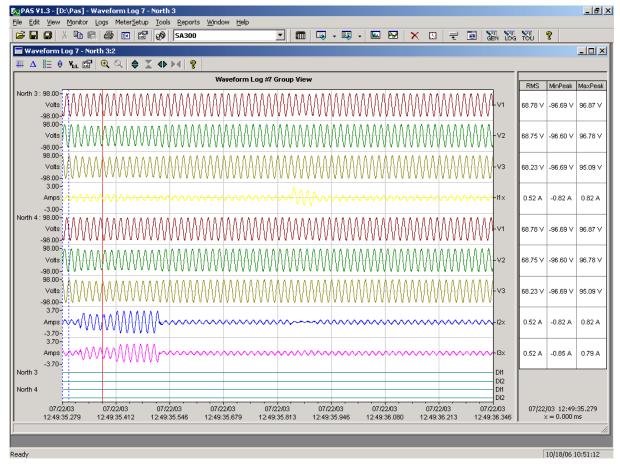
To change the marker position, click on the the button, or click on the waveform window with the right mouse button and select Set Marker, and then click on the point where you want to put the marker. You can drag both markers with the mouse, or use the right and left arrow keys on your keyboard to change the marker position. Click on the waveform pane to allow the keyboard to get your input before using the keyboard.

Using a Zoom

You can use a horizontal and a vertical zoom to change size of your waveforms. Use the buttons $\Rightarrow \mathbf{X} \Rightarrow \mathbf{V} \Rightarrow \mathbf{V}$ on you local toolbar representing green arrowheads to zoom in or out of the waveform graph. Every click on these buttons gives you a 100-percent horizontal or 50-percent vertical zoom. Two buttons $\mathbf{Q} = \mathbf{Q}$ give you a proportional zoom in both directions.

When in the overlapped waveform view, you can zoom in on a selected waveform region. Click on the waveform window with the right mouse button, click 'Zoom', point onto one of the corners of the region you want to zoom in, press and hold the left mouse button, then point to another corner of the selected region and release the mouse button.

Delta Measurements


To measure the distance between two waveform points, click on the Delta button Δ , then click on one point, and then click on the second point. The first reference point is still frozen until you close and reopen Delta, while the second point can be placed anywhere within the waveform line. You can measure a delta in both directions. To disable the Delta, click on the Delta button once again.

Viewing Synchronized Waveforms

If you have a number of devices with synchronized clocks, you can view waveforms recorded at different locations in one window. PAS can synchronize the time axes for different waveforms so they could be displayed in a single plot.

To get synchronized waveforms:

- 1. Put the databases with waveforms into the same folder, or put the sites from which you uploaded data to the same group in the sites tree.
- 2. Open a waveform you want to synchronize with other waveforms, and then click on the Multi-site View button . PAS searches for time-coordinated waveforms that have the same time span as your selected waveform.

Check the sites your want to see displayed.

S	elect Sites		×
	Γ	Check All 📃 Clear All	
	Site Name Database		Channels
North 3		D:\Pas\Log Files\North 3.mdb	
	Power 10	D:\Pas\Log Files\Power 10.mdb	
North 4 D:\Pas\Log Files\North 4.md		D:\Pas\Log Files\North 4.mdb	
		<u>O</u> K <u>C</u> ancel	

- 4. Click on the "Channels" button and select channels for each site.
- 5. Click OK.

To change the channels, click on the waveform window with the right mouse button and select "Channels...".

Chapter 14 COMTRADE and PQDIF Converters

The COMTRADE and PQDIF file converters allow you to convert waveforms into COMTRADE or PQDIF file format, and data log tables – into PQDIF format.

Manual Converting

To manually convert your waveforms or a data log into COMTRADE or PQDIF format:

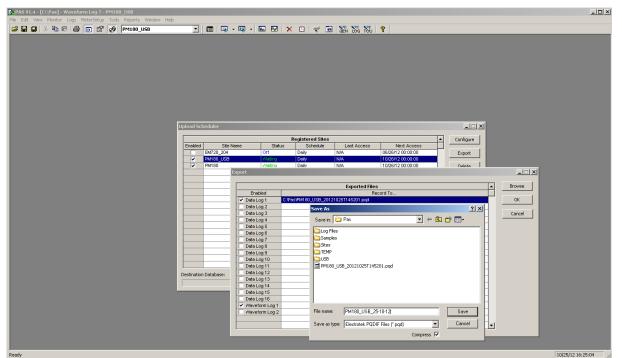
1. Click on the Export 🖼 button on the PAS toolbar.

Export: Select a Source File - PM180_USB	? ×
Look in: 🧀 Pas 🗾 🖛 🖻 📸 🛛 Tables:	
Cog Files PM180_USE Samples Sites TMP USB 20110329_01 EM720_204 EM720_204 PasConfig PasConfig	
File name: PM180_USB Open Waveform Log 7	
Files of type: Access Database (".mdb)	

2. Select the database and a waveform or data log table you want to export, and then click Open.

Save As		<u>? ×</u>
Save in: 🗀	Pas 💌 🗲 🛍 📅 🎫	
Log Files		
Sites		
USB		
, File name:	PM180_USB Sav	e
Save as type:	COMTRADE 1999 ASCII Files (*.dat)	el
	Compress	

3. Select a directory where you want to store your exported files, type a file name that identifies your files, select a desired file output format, and then click on the Save button. The PQDIF files are commonly recorded in compressed format. If you do not want your files to be compressed, uncheck the Compress box before saving the file.


In COMTRADE format, each waveform event is recorded into a separate file. A COMTRADE waveform file name contains a site name followed by an ID of the fault or power quality event, which triggered the waveform record.

PQDIF file names contain a site name followed by a timestamp of the first event recorded to the file, and may look like 12KVSUB_20040928T133038.pqd.

Automatic Converting

PAS allows you to automatically convert waveform and data logs into COMTRADE or PQDIF format at the time you upload data from your devices via the Upload Scheduler.

To automatically convert your waveform or data log tables into COMTRADE or PQDIF format: 1. Open the Upload Scheduler.

- 2. Highlight a desired device site with the left mouse button, and then click on the Export button.
- 3. Check the Enabled box for a data log or a waveform log table you want to automatically convert at the upload time.
- 4. Highlight the Record to... row for the selected table and click on the Browse button.
- 5. Select a folder where you want to store converted files, type in the converted file's name, select a desired output file format, and then click on Save.
- 6. Repeat the same for all tables you wish to be converted.
- 7. Click OK.

Appendix A Parameters for Analog Output

The following table lists parameters that can be provided on the device's analog outputs.

Designation	Description
NONE	None (output disabled)
	1-Cycle Phase Values
V1 RT	V1 Voltage
V2 RT	V2 Voltage
V3 RT	V3 Voltage
V12 RT	V12 Voltage
V23 RT	V23 Voltage
V31 RT	V31 Voltage
I1 RT	I1 Current
I2 RT	I2 Current
I3 RT	I3 Current
V1 THD RT	V1 Voltage THD
V2 THD RT	V2 Voltage THD
V3 THD RT	V3 Voltage THD
I1 THD RT	I1 Current THD
I2 THD RT	I2 Current THD
13 THD RT	I3 Current THD
II TDD RT	II Current TDD
II TOD RT	II Current TDD
12 TDD RT	I3 Current TDD
II KF RT	II K-Factor
I2 KF RT	II K-Factor
12 KF RT	I3 K-Factor
	1-Cycle Total Values
kW RT	
	Total kvar
kvar RT kVA RT	
PF RT	Total kVA
PF LAG RT	Total PF Total PF Lag
PF LAG RT	Total PF Lead
VOLT AVG RT	
VOLT AVG KI	3-phase average L-N/L-L voltage 3-phase average L-L voltage
AMPS AVG RT	3-phase average current
	1-Cycle Auxiliary Values
I4 RT	I4 Current
In RT	In Current
FREQ RT	
FREQ3 RT	Frequency
VOLT DC RT	Frequency with 3 decimal points DC voltage
	1-Sec Phase Values
Average Phase	V1 Voltage
V2 AVR	V1 Voltage
V3 AVR	V3 Voltage
V12 AVR	V12 Voltage
V23 AVR V31 AVR	V23 Voltage
	V31 Voltage
I1 AVR	II Current
I2 AVR	I2 Current
I3 AVR	I3 Current
	1-Sec Total Values
kW AVR	Total kW
kvar AVR	Total kvar
kVA AVR	Total kVA
PF AVR	Total PF
PF LAG AVR	Total PF Lag
PF LEAD AVR	Total PF Lead
VOLT AVG AVR	3-phase average L-N voltage
VOLT AVG LL AVR	3-phase average L-L voltage
AMPS AVG AVR	3-phase average current

PM180 Substation Automation Unit

Designation	Description
	1-Sec Auxiliary Values
In AVR	In Current
FREQ AVR	Frequency
FREQ3 AVR	Frequency with 3 decimal points
	Present Demands
kw IMP ACC DMD	Accumulated kW import demand
kW EXP ACC DMD	Accumulated kW export demand
kvar IMP ACC DMD	Accumulated kvar import demand
kvar EXP ACC DMD	Accumulated kvar export demand
kva ACC DMD	Accumulated kVA demand

Appendix B Setpoint Actions

Action	Target	Description
NONE	Ŭ	None (no action)
SET EVENT FLAG	1-16	Set user event flag 1-16
CLEAR EVENT FLAG	1-16	Clear user event flag 1-16
OPERATE RELAY	1-32	Operate relay RO1-RO32
RELEASE RELAY	1-32	Release latched relay RO1-RO32
INCREMENT COUNTER	1-32	Increment counter 1-32
DECREMENT COUNTER	1-32	Decrement counter 1-32
CLEAR COUNTER	1-32	Clear counter 1-32
RESET ENERGY		Reset total energy registers
RESET DEMANDS	ALL	Reset all maximum demand registers
RESET DEMANDS	POWER	Reset maximum power demand registers
RESET DEMANDS	VOLT/AMP	Reset maximum volts and ampere demand registers
RESET DEMANDS	VOLT	Reset maximum volt demand registers
RESET DEMANDS	AMP	Reset maximum ampere demand registers
RESET DEMANDS	HRM	Reset maximum harmonic demand registers
RESET TOU ENERGY		Reset summary and TOU energy
RESET TOU DEMANDS		Reset summary and TOU maximum demands
RESET ALL COUNTERS		Clear all counters
CLEAR MIN/MAX LOG		Clear Min/Max log registers
EVENT LOG	OPER	Event log on setpoints operated
EVENT LOG	RELS	Event log on setpoints released
EVENT LOG	ANY	Event log on any setpoints transition
DATA LOG	1-16	Data log 1-16
WAVEFORM LOG	1-8	Waveform Log 1-8
SOE LOG		SOE (Sequence of Events) Log
EXT TRIGGER	1-16	External trigger 1-16 (UDP broadcast trigger message). See Cross Triggering Setpoints.

Appendix C Parameters for Monitoring and Data Logging

The following table lists parameters measured by the PM180 that are available for monitoring via communication ports, for data logging, and for triggering setpoints.

Designation	Description	
NONE	None (stub, read as zero)	
SETPOINTS	Setpoints Status	
SP1:32	Setpoints 1-32	
SPECIAL INPUTS	Special Inputs (setpoints triggers only)	
VOLT DISTURB	Voltage disturbance – waveshape fault. See Using the Voltage	
	Disturbance Trigger.	
PHASE ROTATION	Phase rotation order	
EVENT FLAGS	User Event Flags	
EVENT FLAG 1:16	Event Flags 1-16	
STATIC EVENTS	Internal Static Events (setpoints triggers only)	
PHASE ORDER ERR	Phase order error	
POS PHASE ORDER	Positive (ABC) phase order	
NEG PHASE ORDER	Negative (ACB) phase order	
PQEVENT	PQ event. See Power Quality Event Indication and Cross Triggering.	
FAULT EVENT	General fault event: fault recorder has been triggered. See Fault	
	Indication and Cross Triggering.	
FAULT DETECTED	The embedded fault detector has detected a fault. See Fault Indication	
	and Cross Triggering.	
EXTERNAL TRIGGER	Fault recorder has been triggered via a digital input. See Fault Indication	
	and Cross Triggering.	
DEVICE FAULT	Device fault (non-critical error). See Device Fault Alarm.	
NO VOLTAGE	No measured voltage	
PULSED EVENTS	Internal Pulsed Events (setpoints triggers only)	
kWh IMP PULSE	kWh Import pulse	
kWh EXP PULSE	kWh Export pulse	
kWh TOT PULSE	kWh Total pulse	
kvarh IMP PULSE		
	kvarh Import pulse	
kvarh EXP PULSE	kvarh Export pulse	
kvarh TOT PULSE	kvarh Total pulse	
kVAh PULSE	kVAh pulse	
START DMD INT	Start of power demand interval pulse	
START TRF INT	Start of tariff interval pulse	
EXT TRIGGERS	External Trigger Events (setpoints triggers only)	
EXT TRIGGER 1:16	External cross triggering channel 1-16 (UDP broadcast trigger message).	
	See <u>Cross Triggering Setpoints</u> .	
TIMERS	Interval Timers (setpoints triggers only)	
TIMER 1:16	Interval timer 1-16	
DIGITAL INPUTS	Digital Inputs	
DI1:48	Digital input status DI1:DI48	
PULSE INPUTS	Pulse Inputs (setpoints triggers only)	
DI1:48	Transition pulse on a digital input DI1:DI48	
RELAYS	Relays	
RO1:16	Relay status RO1:RO2	
COUNTERS	Pulse Counters	
COUNTER 1:32	Pulse counter 1-32	
TIME	Time/Date Parameters (setpoints triggers only)	
DATE	Date (DDMMYY)	
TIME	Time (HHMMSS)	
DAY OF WEEK	Day of week	
YEAR	Year	
MONTH		
	Month Day of month	
	Day of month	
HOURS	Hours	
MINUTES	Minutes	
SECONDS	Seconds	
MINUTE INTERVAL	Minute interval: 1-5, 10, 15, 20, 30, 60 min	
SYMM COMP	Symmetrical Components	
V PSEQ	Positive-sequence voltage	
V NSEQ	Negative-sequence voltage	
V ZSEQ	Zero-sequence voltage	
-	· · · · · · · · · · · · · · · · · · ·	

.	
Designation	Description
V NSEQ UNB%	Negative-sequence voltage unbalance
V ZSEQ UNB%	Zero-sequence voltage unbalance
I PSEQ	Positive-sequence current
INSEQ	Negative-sequence current
I ZSEQ	Zero-sequence current
I NSEQ UNB%	Negative-sequence current unbalance
I ZSEQ UNB%	Zero-sequence current unbalance
RMS (1/2 cycle)	1/2-Cycle Values
V1	V1 voltage
V2	V2 voltage
V3	V3 voltage
V4	V4 voltage
V12	V12 voltage
V23	V23 voltage
V31	V31 voltage
11	11 current
12	2 current
13	13 current
14	l4 current
In	In current
l1x	1x current
l2x	2x current
I3x	3x current
14x	4x current
Inx	Inx current
V ZERO-SEQ	Zero-sequence voltage
I ZERO-SEQ	Zero-sequence current
Ix ZERO-SEQ	x Zero-sequence current
V UNB%	Voltage unbalance
UNB%	Current unbalance
Ix UNB%	x current unbalance
VDC	DC voltage
RT PHASE	1-Cycle Phase Values
V1	V1 Voltage
V2	V2 Voltage
V2 V3	V3 Voltage
v5 I1	1 Current
12	2 Current
13	
kW L1	I3 Current
	kW L1
kW L2	kW L2
kW L3	kW L3
kvar L1	kvar L1
kvar L2	kvar L2
kvar L3	kvar L3
kVA L1	kVA L1
kVA L2	kVA L2
kVA L3	kVA L3
PF L1	Power factor L1
PF L2	Power factor L2
PF L3	Power factor L3
V1 THD	V1/V12 Voltage THD ¹
V2 THD	V2/V23 Voltage THD ¹
V3 THD	V3/V31 Voltage THD ¹
I1 THD	11 Current THD
12 THD	2 Current THD
I3 THD	I3 Current THD
I1 KF	I K-Factor
11 KF 12 KF	1 K-Factor
I3 KF	I3 K-Factor
I1 TDD	1 Current TDD
12 TDD	2 Current TDD
I3 TDD	I3 Current TDD
V12	V12 Voltage
V23	V23 Voltage
V31	V31 Voltage
l1x	1x Current
l2x	2x Current

Designation	Description
13x	I3x Current
RT LOW	1-Cycle Low Values on any Phase
V LOW	Low L-N voltage
I LOW	Low current
kW LOW	Low kW
kvar LOW	Low kvar
kVA LOW	Low kVA
PF LAG LOW	Low lagging PF
PF LEAD LOW	Low leading PF
THD LOW	Low voltage THD ¹
V THD LOW	Low current THD
KFLOW	Low K-Factor
TDD LOW	Low current TDD
V L-L LOW	Low L-L voltage
V THD/I LOW	
	Low voltage interharmonics THD ¹
I THD/I LOW	Low current interharmonics THD
RT HIGH	1-Cycle High Values on any Phase
V HIGH	High L-N voltage
I HIGH	High current
kW HIGH	High kW
kvar HIGH	High kvar
kVA HIGH	High kVA
PF LAG HIGH	High PF Lag
PF LEAD HIGH	High PF Lead
THD HIGH	High voltage THD ¹
V THD HIGH	High current THD
KF HIGH	High K-Factor
I TDD LOW	High current TDD
V L-L HIGH	High L-L voltage
V THD/I HIGH	High voltage interharmonics THD ¹
I THD/I HIGH	High current interharmonics THD
RT TOTAL	1-Cycle Total Values
kW	Total kW
kvar	Total kvar
kVA	Total kVA
PF	Total PF
PF LAG	Total PF lag
PF LEAD	Total PF lead
kw imp	Total kW import
kW EXP	Total kW export
kvar IMP	Total kvar import
kvar EXP	Total kvar export
V AVG	3-phase average L-N voltage
V LL AVG	β-phase average L-L voltage
I AVG	
RT AUX	3-phase average current 1-Cycle Auxiliary Values
14	4 current
In FREQ	
	Frequency
V UNB%	Voltage unbalance
UNB%	Current unbalance
VDC	DC voltage
V4	V4 voltage
14x	4x current
AVR PHASE	1-Second Phase Values
V1	V1 Voltage
V2	V2 Voltage
V3	V3 Voltage
11	1 Current
12	2 Current
13	13 Current
kW L1	kW L1
kW L2	kW L2
kW L3	kW L3
kvar L1	kvar L1
kvar L2	kvar L2
kvar L3	kvar L3
kVA L1	kVA L1
· - ·	<u> </u>

Designation	Description	
kVA L2	kVA L2	
kVA L3	kVA L3	
PF L1	Power factor L1	
PF L2	Power factor L2	
PF L3	Power factor L3	
V1 THD	V1/V12 Voltage THD ¹	
V2 THD	V2/V23 Voltage THD ¹	
V3 THD		
11 THD	V3/V31 Voltage THD ¹	
12 THD	1 Current THD 2 Current THD	
I3 THD	3 Current THD	
I1 KF	1 K-Factor	
12 KF	l2 K-Factor	
13 KF	3 K-Factor	
I1 TDD	1 Current TDD	
12 TDD	2 Current TDD	
I3 TDD	3 Current TDD	
V12	V12 Voltage	
V23	V23 Voltage	
V31	V31 Voltage	
V1x	V1x phase-to-ground voltage	
V2x	V2x phase-to-ground voltage	
V3x	V3x phase-to-ground voltage	
11x	1x Current	
12x	2x Current	
13x	3x Current	
AVR LOW	1-Second Low Values on any Phase	
V LOW	Low L-N voltage	
LOW	Low current	
kW LOW	Low kW	
kvar LOW	Low kvar	
kVA LOW	Low kVA	
PF LAG LOW	Low lagging PF	
PF LEAD LOW	Low leading PF	
THD LOW	Low voltage THD ¹	
V THD LOW	Low current THD	
KF LOW	Low K-Factor	
I TDD LOW	Low current TDD	
V L-L LOW	Low L-L voltage	
V THD/I LOW	Low voltage interharmonics THD ¹	
THD/I LOW	Low current interharmonics THD	
AVR HIGH	1-Second High Values on any Phase	
V HIGH	High L-N voltage	
I HIGH		
kW HIGH	High current High kW	
kvar HIGH	High kvar	
kVA HIGH	High kVA	
PF LAG HIGH	High PF Lag	
PF LEAD HIGH	High PF Lead	
THD HIGH	High voltage THD ¹	
V THD HIGH	High current THD	
KF HIGH	High K-Factor	
I TDD HIGH	High current TDD	
V L-L HIGH	High L-L voltage	
V THD/I HIGH	High voltage interharmonics THD ¹	
I THD/I HIGH	High current interharmonics THD	
AVR TOTAL	1-Second Total Values	
kW	Total kW	
kvar	Total kvar	
kVA	Total kVA	
PF	Total PF	
PF LAG	Total PF lag	
PF LEAD	Total PF lead	
kw imp	Total kW import	
kW EXP	Total kW export	
kvar IMP	Total kvar import	
kvar EXP	Total kvar export	
······		

VAVG 3-phase average L-N voltage VLL AVG 3-phase average current VAVR AUX 1-Second Auxiliary Values 4 4 4 4 7 6 7 6 7 6 7 7 <	Designation	Description	
VILLAVG 3-phase average current IAVG 3-phase average current AVR AUX 1-Second Auxiliary Values A 4 4 current In n ourrent REQ Frequency with 3 decimal points VUNB% Outage unbalance VUNB% Outage unbalance VDC OC voltage V4 V4 voltage V4 V4 voltage V4 V4 voltage V4 V4 voltage V4 V4 voltage V4 V4 voltage V4 V4 voltage V4 V4 voltage V3 V3 voltage V4 V4 voltage V2 V2 voltage V3 V3 voltage V4 V4 voltage V12 V12 voltage V3 V3 voltage V4 V4 voltage V12 V12 voltage V3 V3 voltage V4 A current A current	Designation		
AVG 3-phase average current AVR AUX 1-Second Auxiliary Values A 4 current In n current FREQ Frequency with 3 decimal points FREQ Frequency with 3 decimal points VUNB% Current unbalance UNB% Current unbalance VA VA routrage V4x VA voltage V4x VA voltage V3 V3 voltage V2 V2 voltage V3 V3 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V33 S current X4 4 current N n current X4 4 current N n current <td></td> <td>B-phase average L-IN voltage</td>		B-phase average L-IN voltage	
AVR AUX 1-Second Auxiliary Values 4 4 current in in current REQ Frequency with 3 decimal points VINP% Voltage unbalance VUNP% Voltage unbalance VUNP% Outage outsolve VA V4 voltage V4 V4 voltage V2 V2 voltage V3 V3 voltage V4 V4 voltage V23 V23 voltage V31 V12 voltage V23 V23 voltage V31 V3 voltage V4 V4 voltage V12 V12 voltage V33 V3 voltage V4 V4 voltage V12 V12 voltage V33 V3 voltage V44 Current X			
4 4 current in in current FREQ Frequency with 3 decimal points FREQ3 Frequency with 3 decimal points VUNB% Current unbalance UNB% Current unbalance V4 V4 voltage V4 V4 cutrent - orgound voltage V4 V4 cutrent MS (0.2 sec) D.2 Second RNS Values V1 V1 voltage V3 V3 voltage V3 V3 voltage V2 V2 voltage V3 V3 voltage V3 V3 voltage V31 V4 V4 voltage V22 V2 voltage V33 V3 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V33 V3 current X4 4 current N n current X4 4 current X5 2 current X4 4 current X			
in in n current FREQ Frequency Frequency FREQ3 Frequency with 3 decimal points VUN9% Voitage unbalance VUN9% Current unbalance VDC DC voitage V4 V4 voitage V4 V4 voitage V4 V4 voitage V4 V4 voitage V4 V4 voitage V4 V4 voitage V4 V4 voitage V2 V2 voitage V2 V2 voitage V2 V2 voitage V23 V3 voitage V24 V4 voitage V12 V12 voitage V23 V23 voitage V24 V4 voitage V11 1 current V23 V23 voitage V31 V31 voitage V33 3 current X4 4 current X5 X current X4 4 current X4 4 current	-		
FREQ Frequency with 3 decimal points PREQ3 Frequency with 3 decimal points VNB% Voltage unbalance UNB% Current unbalance VA V4 voltage V4 V4 voltage V1 V1 voltage V2 V2 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V4 4 current in n current X3 3 current X4 4 current in n current X4 4 current ix in current X4 x	In		
FREC03 Frequency with 3 decimal points VINB% Voltage unbalance UNB% Current unbalance VDC DC voltage V4 V4 voltage V4x W4 current RMS (02 sec) D.2-Second RMS Values V1 V1 voltage V2 V2 voltage V2 V2 voltage V3 V3 voltage V3 V3 voltage V23 V23 voltage V23 V31 voltage V31 V14 V4 Current V33 V32 voltage V34 4 current n n. current x2 current x2 current V2 x2 colseQ Z cero-sequence voltage			
VUNB% Voltage VDC DC voltage VDC DC voltage V4 V4 kneutral-o-ground voltage V4x V4 kneutral-to-ground voltage V1 V1 voltage V2 V2 voltage V3 V3 voltage V12 V1 voltage V22 V2 voltage V31 V31 voltage V31 V31 voltage 11 11 current 22 12 current 33 3 current 4 4 current in n current ix ix current X4 4 current ix ix current X4 4 current ix ix current ix zero-sequence voltage izero-sequenc			
UNB% Current unbalance VDC DC voltage V4 V4 voltage V4x V4x neutral-to-ground voltage V4x V4x current RNS (0.2 sec) D.2-Second RNS Values V1 V1 voltage V2 V2 voltage V2 V2 voltage V23 V2 voltage V14 V4 voltage V12 V12 voltage V23 V23 voltage V23 V23 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V33 V3 voltage V31 V31 voltage V33 V3 voltage V34 K ourrent V35 Surernet V44 K ourrent V4 K voltage V2ERO-SEQ Zero-sequence voltage <	V UNB%		
V4 V4 voltage V4x V4 v neutral-o-ground voltage V4x V4 v neutral-o-ground voltage V4x V4 v nottage V1 V1 voltage V2 V2 voltage V3 V3 voltage V4 V4 voltage V12 V12 voltage V23 V2 voltage V31 V3 voltage V32 V2 voltage V31 V3 voltage V31 V3 voltage V31 V3 voltage V31 V3 voltage V31 V3 voltage V31 V3 voltage V31 V3 voltage V31 V3 voltage V31 V3 voltage V31 V3 voltage V31 V3 voltage V4x 4 current X4x 4 current X52 Current X24 Current X25 Zero-sequence current X25 Zero-sequence current V			
V4x V4x neutrant VAx V4x current NNS (0.2 sec) D.2-Second RMS Values V1 V1 voltage V2 V2 voltage V3 V3 voltage V3 V3 voltage V2 V2 voltage V3 V3 voltage V23 V23 voltage V23 V23 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V12 voltage V32 V22 current X4 4 current n n current X4x 4x current Nx nx current X2ERO-SEQ Zero-sequence current V2ERO-SEQ Xero-sequence Z2RO-SEQ Zero-sequence V02 V2 voltage	VDC	DC voltage	
Hx Hx Hx RMS (0.2 sec) 0.2-Second RMS Values V1 V1 voltage V2 V2 voltage V3 V3 voltage V4 V4 voltage V12 V12 voltage V23 V23 voltage V23 V23 voltage V23 V23 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V33 V3 current V4 4 current n n current V2 X2 current X3x 3x current V2 X2 cor-sequence current V VERO-SEQ Zero-sequence voltage ZERO-SEQ Zero-sequence voltage VERSE DC voltage VDC DC voltage V22 V2 voltage	V4		
RMS (0.2 sec) D.2-Second RMS Values V1 V1 voltage V2 V2 voltage V3 V3 voltage V4 V4 voltage V12 V12 voltage V23 V23 voltage V23 V23 voltage V23 V23 voltage V23 V23 voltage V31 V31 voltage 11 1 current 12 2 current 13 3 current 14 4 current 15x 1x current 16x Ax current 17x 1x current 18x 3x current 19x ZERO-SEQ 2ero-sequence current V ZERO-SEQ X Zero-sequence current V UNB% Voltage unbalance UNB% Current unbalance V UNB% X current unbalance V VDC DC voltage V2EC V2 V2 voltage V3 V3 voltage V4 V4 voltage	V4x	V4x neutral-to-ground voltage	
V1 V1 voltage V2 V2 voltage V3 V3 voltage V4 V4 voltage V12 V12 voltage V23 V23 voltage V23 V23 voltage V23 V23 voltage V23 V23 voltage V31 V31 voltage 1 1 current 2 2 current 3 3 current 4 4 current in n current 1x 1 x current 2x 2 x current 3x 3x current 4x 4x current inx n x current x X ZERO-SEQ Zero-sequence current V ZERO-SEQ Xero-sequence current V UNB% Voltage unbalance VUNB% Voltage unbalance VUNB% Voltage V ZECO Do voltage V SEC Positive-sequence Voltage V SEC Positive-sequence Voltage V4 V4 voltage	l4x		
V2 V2 voltage V3 V3 voltage V4 V4 voltage V12 V12 voltage V23 V23 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V3 voltage V31 V3 voltage V31 V3 voltage V31 V3 voltage V31 V3 voltage V31 V3 current X4 4 current In n current X2x 2x current X4x 4x current X4x 4x current X52RO-SEQ Zero-sequence current V2ERO-SEQ Zero-sequence current VUNB% Voltage unbalance UNB% Voltage unbalance VDC DC voltage VPSEC Positive-sequence Voltage V2ESE UNB% Zero-sequence Voltage V3 V3 voltage V4 V1 voltage V2 <v102< td=""> V2 voltage<!--</td--><td>RMS (0.2 sec)</td><td>0.2-Second RMS Values</td></v102<>	RMS (0.2 sec)	0.2-Second RMS Values	
V3 V3 voltage V4 V4 voltage V12 V12 voltage V23 V23 voltage V31 V12 voltage V31 V11 voltage 11 11 current 22 2 current 3 3 current 14 4 current 15 3 current 16 n current 17x 17x current 2x 2x current 3x 3x current 16x 4x current 17x 17x current 18x 4x current 19x 17x current 19x 2ero-sequence voltage 12ERO-SEQ Zero-sequence voltage 12ERO-SEQ x Zero-sequence voltage 12ERO-SEQ x Current unbalance VUB% Voltage unbalance VDC DC voltage FREQ Frequency V PSEC Positive-sequence Voltage V1 V1 voltage V2 V2 voltage V3 V3 voltage V4 V	V1		
V4 V4 voltage V12 V12 voltage V23 V23 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V2 V2 courrent V34 Ax current V44 Ax current V2 ERO-SEQ Zero-sequence current V VERO-SEQ Zero-sequence current V VB% Voltage unbalance VDC DC voltage VB% Voltage unbalance VDC DC voltage V2 SEC UNB% Zero-sequence Voltage V2 SEC UNB% Zero-sequence Voltage V2 SEC UNB% Zero-sequence Voltage V3 soltage V31 voltage			
V12 V12 voltage V23 V23 voltage V31 V31 voltage 11 1 current 12 2 current 13 3 current 14 4 current 15 1 x current 16 n 17 1 x current 18x 1 x current 19x 1 x current 10NB% Voltage unbalance 10NB% Voltage 10X 1 x current 10X 1 x current 10X 1 x current 10X 1 x current 10X 1 x voltage 11 1			
V23 V23 voltage V31 V31 voltage V31 1 1 1 11 1 12 2 current 13 3 current 14 4 current 15 1 x current 16 1 x current 17x 1 X current 18x 3 x current 19x 1 X current 19x 1 X current 19x 1 X current 19x 1 X current 19x 1 X current 19x 1 X current unbalance 10x 1 X current unbalance 11x 1 X current unbalance 12x 2 Cero-sequence Voltage 12x 2 Sec UNB% <tr< td=""><td></td><td></td></tr<>			
V31 V31 voltage 11 I1 current 12 2 current 13 3 current 14 4 current 15 1 x current 16 n 17 1 x current 18x 1 x current 19x 1 x current 11x 1 x current 12x 1 x oltage 13x 3 x current 144 4 x current 144 4 x cu			
11 1 current 2 2 current 2 2 current 3 3 current 4 4 current in in current 1x 1 x current 2x 2x current 3x 3x current 3x 3x current 2x 2 zero-sequence voltage 1ZERO-SEQ Zero-sequence current VZERO-SEQ X zero-sequence current V VB% Voltage unbalance 1UN% Current unbalance VDC DC voltage YZECO-SEQ Frequency VC DC voltage YPSEC Positive-sequence Voltage V2 XSEC UNB% Zero-sequence Voltage Unbalance V1 V1 soltage V2 V2 voltage V3 V3 voltage V4 V4 voltage V1 V1 soltage V2 V2 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltag			
2 2 current 3 3 current 4 4 current in in current 1x 1 x current 2x 2x current 3x 3x current 4x 4 x current 1x in x current 2x 2x current 3x 3x current 4x 4 x current 1x in x current 1x ZERO-SEQ Zero-sequence current x XERO-SEQ X zero-sequence current V MB% Voltage unbalance VUNB% Voltage unbalance VUNB% Current unbalance VDC DC voltage FREQ Frequency V PSEC Positive-sequence Voltage V1 V1 soltage V2 V2 voltage V3 V3 voltage V4 V4 voltage V1 V1 soltage V23 V23 voltage V33 V3 current IA Current			
3 3 current 4 4 current 1n in current 11x 1x current 2x 2x current 3x 3x current 4x 4x current 1x 7x current 4x 4x current 1x 7x current 1x 7x current 1x 7x current 1x 7x current 1x 7x current unbalance 1x VB% Voltage unbalance 10NB% Current unbalance 12RO-SEQ 7x cero-sequence voltage 14NB% X current unbalance 14NB% X current unbalance 12NB% X current unbalance 12VDC DC voltage VC DC voltage V2 Valge V2 Second RMS Values V1 V1 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage	11		
14 4 current In In current 1x 1x current 1x 3x current 3x 3x current 1x x current 1x nx ourrent 1x x current 1xx nx current 1xx nx current 1xx nx current 1x ZERO-SEQ 2ero-sequence current x ZERO-SEQ x zero-sequence current vUNB% Current unbalance 1x UNB% Current unbalance VDC DC voltage DC voltage Frequency VSEC Positive-sequence Voltage VISEC Positive-sequence Voltage V1 VIA V1 voltage V3 Zero-sequence Voltage V3 V1 V1 voltage V1 V1 td> <td></td>			
In In current 11x 11x current 12x 12x current 13x 13x current 13x 13x current 14x 4x current 11x Inx current 11x Inx current 11x Inx current 11x Inx current 11x Inx current 11x Inx current 11x Inx current unbalance V UNB% Current unbalance VUND OC voltage FREQ Frequency VC DC voltage FREQ Frequency V VSEC Positive-sequence Voltage V2 V2 Sec UNB% Zero-sequence Voltage V V1 V1 voltage V1 V1 soltage V1 V1 soltage V1 V1 soltage V12 V12 voltage V2 V2 soltage V31 V31 voltage V12 V12 voltage V13 V31 voltage V14 V4			
11x 11x current 12x 2x current 13x 3x current 13x 1x current 13x 1x current 13x 1x current 13x 1x current 11x 1x current unbalance 11x 1x current of tage 11x 1x current 11x 1x current 11x 1x current 12x 1x current 13x 3x current 14x 1x current 11x 1x current 11x 1x curr			
2x 2x current 3x 3x current 4x 4x current 1x Inx current v ZERO-SEQ Zero-sequence voltage 1ZERO-SEQ Zero-sequence current x ZERO-SEQ x Zero-sequence current v UNB% Voltage unbalance 1UNB% Current unbalance v UNB% x current unbalance VDC DC voltage FREQ Frequency V PSEC Positive-sequence Voltage V2ESC UNB% Zero-sequence Voltage V3 2ero-sequence Voltage V2 V2 voltage V2 V2 voltage V2 V2 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V3 voltage V3 V2 voltage V3 <td< td=""><td></td><td></td></td<>			
3x 3x current 4x 4x current 1xx Inx current 1xx Inx current 1x Inx current 1x Zero-sequence current 1zERO-SEQ Zero-sequence current x ZERO-SEQ x Zero-sequence current v UNB% Voltage unbalance 1UNB% Current unbalance v VDC DC voltage FREQ Frequency V SEC Positive-sequence Voltage VZSEC UNB% Zero-sequence Voltage V1 Voltage V1 Voltage V2 V2 voltage V3 V3 voltage V4 V4 voltage V1 V1 voltage V2 V2 voltage V3 V3 voltage V4 V4 voltage V12 V12 voltage V33 V3 voltage V31 V31 voltage 11 1 current 12 2 current 13 3 current 14 4 current In			
I4x 4x current Inx Inx current Inx Inx current VZERO-SEQ Zero-sequence current VZERO-SEQ X Zero-sequence current VNB% Voltage unbalance VUNB% Current unbalance VUNB% Current unbalance VDC DC voltage PREQ Frequency V PSEC Positive-sequence Voltage VZEC UNB% Zero-sequence Voltage Unbalance V3 Second RMS Values V1 V1 voltage V2 V2 voltage V3 V3 voltage V4 V4 voltage V12 V1 voltage V22 V2 voltage V33 V3 voltage V4 V4 voltage V12 V12 voltage V23 V23 voltage V31 V31 voltage V14 1 current 12 2 current 13 3 current 14 4 current In n current Ix 1x current			
InxInx currentV ZERO-SEQZero-sequence voltageIZERO-SEQZero-sequence currentX ZERO-SEQx Zero-sequence currentV UNB%Voltage unbalanceIUNB%Current unbalanceVDB%X current unbalanceVDCDC voltageFREQFrequencyV SECPositive-sequence VoltageV ZSEC UNB%Zero-sequence Voltage UnbalanceX3V3 voltageV1V1 voltageV1V1 voltageV2V2 voltageV3V3 voltageV3V3 voltageV2V2 voltageV2V2 voltageV3V3 voltageV11V1 voltageV12V12 voltageV23V23 voltageV31V31 voltageV31V31 voltageV33 currentI44 currentInn currentIx1 x currentIxX x currentXx2x currentXx3x currentVZERO-SEQZero-sequence voltageIZERO-SEQZero-sequence currentV ZERO-SEQZero-sequence currentV UNB%Voltage unbalanceVUNB%Voltage unbalanceVDRVoltage unbalanceVDRVoltage unbalance			
V ZERO-SEQ Zero-sequence current IZERO-SEQ Zero-sequence current ix ZERO-SEQ ix Zero-sequence current vUNB% Voltage unbalance IUNB% Current unbalance VDC DC voltage FREQ Frequency V VPSEC Positive-sequence Voltage VSEC Positive-sequence Voltage V3 Second RMS Values V1 V1 voltage V2 V2 voltage V3 V3 voltage V4 V4 voltage V2 V2 voltage V3 V3 voltage V4 V4 voltage V23 V23 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V4 V4 current In In current IX Ix current IX Ix current IX Ix current IX Ix current IX Ix current IX Ix current IX Ix current			
IZERO-SEQZero-sequence currentx ZERO-SEQx Zero-sequence currentV UNB%Voltage unbalanceUNB%Current unbalancex UNB%x current unbalancex UNB%x current unbalanceVDCDC voltageFREQFrequencyV PSECPositive-sequence Voltage UnbalanceXIV1V1VoltageV2Positive-sequence Voltage UnbalanceXISecond RMS ValuesV1V1 voltageV2V2 voltageV3V3 voltageV4V4 voltageV12V12 voltageV23V23 voltageV23V23 voltageV31V31 voltageV11 current121 current133 current144 current153 current161 x current17x1 x current18x3 x current19x1 x current10x1 x current11x1 x current12x2 x current13x3 x current14x4 x current15x1 x current17x1 x current17x1 x current18x1 x current19x1 x current19x1 x current19x1 x current19x1 x current19x1 x current19x1 x current19x1 x current19x1 x current19x1 x			
x ZERO-SEQ x Zero-sequence current V UNB% Voltage unbalance I UNB% Current unbalance x UNB% x current unbalance VDC DC voltage FREQ Frequency V PSEC Positive-sequence Voltage V ZSEC UNB% Zero-sequence Voltage Unbalance RMS (3 sec) 3-Second RMS Values V1 V1 voltage V2 V2 voltage V3 V3 voltage V4 V4 voltage V2 V2 voltage V3 V3 voltage V4 V4 voltage V2 V2 voltage V3 V3 voltage V4 V4 voltage V23 V23 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V3 voltage V33 V32 voltage V31 V31 voltage V31 V31 voltage V31 V32 voltage V33 V23 voltage <td></td> <td></td>			
V UNB% Voltage unbalance UNB% Current unbalance X UNB% x current unbalance X UNB% x current unbalance VDC DC voltage FREQ Frequency V PSEC Positive-sequence Voltage V ZSEC UNB% Zero-sequence Voltage Unbalance RMS (3 sec) 3-Second RMS Values V1 V1 voltage V2 V2 voltage V3 V3 voltage V4 V4 voltage V12 V12 voltage V23 V23 voltage V31 V31 voltage V32 V23 voltage V31 V31 voltage V31 V31 voltage V33 3 current I3 3 current I4 4 current In In current I1x 1 x current I2x 2 x current I3x 3x current I3x 3x current I3x X current Ix X current Ix X current			
LUNB%Current unbalanceIX UNB%X current unbalanceVDCDC voltageFREQFrequencyV PSECPositive-sequence VoltageVZSC UNB%Zero-sequence Voltage UnbalanceRMS (3 sec)3-Second RMS ValuesV1V1 voltageV2V2 voltageV3V3 voltageV4V4 voltageV12V12 voltageV23V23 voltageV31V3 voltageV33V3 voltageV31V31 voltageV23V23 voltageV31V31 voltageV333 currentI44 currentInn currentIX1x currentIXX3x currentIXX4 currentIx1x currentIxX2xZx currentIXX2xXX2 currentIXX3xIXX2 currentIXX2xX2xZero-sequence voltageZERO-SEQZero-sequence currentIX ZERO-SEQZero-sequence currentIX ZERO-SEQX zero-sequence currentIX VDB%Voltage unbalanceVDCDC voltage	V UNB%		
VDCDC voltageFREQFrequencyV PSECPositive-sequence VoltageV ZSEC UNB%Zero-sequence Voltage UnbalanceRMS (3 sec)3-Second RMS ValuesV1V1 voltageV2V2 voltageV3V3 voltageV4V4 voltageV12V12 voltageV23V23 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31X31 voltageV31X31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV33X3 currentX44 currentInn currentI1x1 x currentI2x2 x currentI3x3 x currentI3x3 x currentI1xn x currentV ZERO-SEQZero-sequence voltageI ZERO-SEQZero-sequence currentV ZERO-SEQX Zero-sequence currentV VDS%Voltage unbalanceVDCDC voltage	I UNB%		
FREQFrequencyV PSECPositive-sequence VoltageV ZSEC UNB%Zero-sequence Voltage UnbalanceRMS (3 sec)3-Second RMS ValuesV1V1 voltageV2V2 voltageV3V3 voltageV4V4 voltageV12V12 voltageV23V23 voltageV23V23 voltageV31V31 voltageV22V2 currentV24V2 currentV25V2 currentV25Zero-sequence voltageV ZERO-SEQZero-sequence currentV ZERO-SEQZero-sequence currentV VDS%Voltage unbalanceV UNB%Voltage unbalanceVDCDC voltage	Ix UNB%	x current unbalance	
FREQFrequencyV PSECPositive-sequence VoltageV ZSEC UNB%Zero-sequence Voltage UnbalanceRMS (3 sec)3-Second RMS ValuesV1V1 voltageV2V2 voltageV3V3 voltageV4V4 voltageV12V12 voltageV12V12 voltageV33V3 voltageV31V31 voltageV111 currentV22 currentV22 currentV322 currentV22 currentV22 currentV22 currentV22 currentV22 currentV22 currentV22 currentV22 currentV22 currentV22 currentV22 currentV22 currentV22 cur	VDC	DC voltage	
V ZSEC UNB%Zero-sequence Voltage UnbalanceRMS (3 sec)3-Second RMS ValuesV1V1 voltageV2V2 voltageV3V3 voltageV4V4 voltageV12V12 voltageV12V12 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV222 current122 current133 current144 current11x11x current12x2x current13x3x current14x4x current11x1x current11x1x current11x1x current11x1x current11x1x current11x1x current11x1x current12x2 ero-sequence current14x4 x current15x2 ero-sequence current15x2 ero-sequence current15x2 ero-sequence current15x2 ero-sequence current15x2 ero-sequence curren	FREQ		
RMS (3 sec)3-Second RMS ValuesV1V1 voltageV2V2 voltageV3V3 voltageV4V4 voltageV12V12 voltageV23V23 voltageV31V31 voltageV31V31 voltageV31V31 voltageV31V31 voltageV311 current122 current133 current144 current151 x current161 x current171 x current183 x current183 x current191 x current101 x current111 x current122 x current133 x current144 x current151 x current161 x current171 x current182 x current191 x current101 x current111 x current122 cero-sequence voltage122 ero-sequence current141 x current151 x zero-sequence current161 x zero-sequence current171018%1019%1019%10 <td< td=""><td>V PSEC</td><td>Positive-sequence Voltage</td></td<>	V PSEC	Positive-sequence Voltage	
V1 V1 voltage V2 V2 voltage V3 V3 voltage V4 V4 voltage V12 V12 voltage V23 V23 voltage V23 V23 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V33 V3 voltage V31 V31 voltage V31 V31 voltage 14 1 current 15 1 x current 16 1 x current 17 1 x current 18x 1 x current 19x	V ZSEC UNB%		
V2 V2 voltage V3 V3 voltage V4 V4 voltage V12 V12 voltage V23 V23 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V4 V4 V2 Current V3 Scurrent V4 V4 V2 Zero-sequence voltage V2 Zero-sequence current V2 Zero-sequence curre			
V3 V3 voltage V4 V4 voltage V12 V12 voltage V23 V23 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V31 V31 voltage V4 4 current In In current Ix Ix current Ix Ix current Ix Ix current Ix Ix current Ix Ix current Ix Ix current Ix Ix current Ix Ix current Ix Ix current Ix Ix current Ix current Ix	V1		
V4 V4 voltage V12 V12 voltage V23 V23 voltage V31 V31 voltage V31 V31 voltage I1 1 current I2 2 current I3 3 current I4 4 current In In current I1x 1x current I2x 2x current I3x 3x current I4x 4 current In In current I1x 1x current I2x 2x current I3x 3x current I4x 4x current Inx In x current VZERO-SEQ Zero-sequence voltage IZERO-SEQ Zero-sequence current Ix ZERO-SEQ x Zero-sequence current VUNB% Voltage unbalance VUNB% Voltage unbalance VDC DC voltage	V2	V2 voltage	
V12V12 voltageV23V23 voltageV31V31 voltageI11 currentI22 currentI33 currentI44 currentInIn currentI1xIx currentI2x2x currentI3x3x currentI4xIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx Zero-sequence currentIx ZERO-SEQIx Zero-sequence currentIx ZERO-SEQIx Zero-sequence currentIx ZERO-SEQIx Zero-sequence currentIx UNB%Voltage unbalanceIx UNB%Ix current unbalanceIx UNB%Ix current unbalanceIx UNB%Ix current unbalanceIx UNB%Ix current unbalanceIx UNB%Ix current unbalanceIx UNB%Ix current unbalanceIx UNB%Ix current unbalanceIx UNB%Ix current unbalanceIx UNB%Ix current unbalanceIx UNB%Ix current unbalanceIx UNB%Ix curre			
V23V23 voltageV31V31 voltageI1I1 currentI2I2 currentI3I3 currentI4I4 currentInIn currentI1xI1x currentI2xI2x currentI3xI3x currentI4xI4x currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentIxIx currentV ZERO-SEQZero-sequence voltageIZERO-SEQZero-sequence currentIx ZERO-SEQx Zero-sequence currentV UNB%Voltage unbalanceI UNB%Current unbalanceI UNB%ix current unbalanceVDCDC voltage			
V31V31 voltage111 current122 current133 current144 current1nn current11x1x current12x2x current13x3x current14x4x current15x3x current16x4x current17x1x current18x3x current19x2ero-sequence voltage172RO-SEQZero-sequence current172RO-SEQX Zero-sequence current172RO-SEQ			
11 current22 current33 current44 current144 current1nin current1x1x current1x2x current1x3x current1x3x current1x4x current1x4x current1x1x current1x2x current1x2x current1x4x current1x1x current1x			
1212 current1313 current1414 current1414 current11x1x current12x1x current13x13x current13x13x current14x14x current14x14x current15x15x current16x15x current17x15x current18x15x current18x15x current18x15x current19x15x current19x15x current10x15x current10x15x current10x15x current10x15x current10x15x current10x15x current10x15x current unbalance10x15x rent unbalance15x current unbalance15x current unbalance15x current unbalance15x current unbalance15x current unbalance15x current unbalance15x current unbalance15x current unbalance15x current unbalance15x current unbalance15x current unbalance15x current unbalance15x current unbalance15x current			
33 current144 current1nin current11x1x current12x2x current13x3x current14x4x current15x1x current16x1x current17x1x current18x1x current19x1x current19x1x current19x1x current19x1x current19x1x current19x2ero-sequence voltage12ERO-SEQ2ero-sequence current12ERO-SEQx Zero-sequence current12ERO-SEQx Zero-sequence current10NB%Voltage unbalance10NB%1x current unbalance10NB%1x current unbalance10NB%1x current unbalance10NB%1x current unbalance10NB%1x current unbalance10NB%1x current unbalance10NB%1x current unbalance10NB%1x current unbalance10NB%1x current unbalance10NB%1x current unbalance10NB%1x current unbalance10NB%1x current unbalance10NB%1x current unbalance10NB%1x current unbalance11001x current unbalance11001x current unbalance11001x current unbalance11001x current unbalance11001x current unbalance11001x current unbalance11001x current unbalance11001x current unbalance <td></td> <td></td>			
444 currentInin currentI1x1x currentI2x2x currentI3x3x currentI4x4x currentInxinx currentV ZERO-SEQZero-sequence voltageI ZERO-SEQZero-sequence currentIx ZERO-SEQx Zero-sequence currentV NB%Voltage unbalanceI UNB%Current unbalanceI VDCDC voltage	12		
InIn currentI1x1x currentI2x2x currentI3x3x currentI4x4x currentInxInx currentV ZERO-SEQZero-sequence voltageI ZERO-SEQZero-sequence currentIx ZERO-SEQx Zero-sequence currentV NB%Voltage unbalanceI UNB%Current unbalanceI VDB%x current unbalanceVDCDC voltage			
11x 1x current 12x 2x current 13x 3x current 14x 4x current 1nx Inx current V ZERO-SEQ Zero-sequence voltage I ZERO-SEQ Zero-sequence current 1x ZERO-SEQ ix Zero-sequence current V UNB% Voltage unbalance I UNB% Current unbalance I VDB% ix current unbalance			
2x 2x current I3x I3x current I4x 4x current Inx Inx current V ZERO-SEQ Zero-sequence voltage I ZERO-SEQ Zero-sequence current Ix ZERO-SEQ ix Zero-sequence current V UNB% Voltage unbalance I UNB% Current unbalance I UNB% ix current unbalance VDC DC voltage			
I3x I3x current I4x I4x current Inx Inx current V ZERO-SEQ Zero-sequence voltage I ZERO-SEQ Zero-sequence current Ix ZERO-SEQ ix Zero-sequence current V UNB% Voltage unbalance I UNB% Current unbalance Ix UNB% ix current unbalance VDC DC voltage			
I4x I4x current Inx Inx current V ZERO-SEQ Zero-sequence voltage I ZERO-SEQ Zero-sequence current Ix ZERO-SEQ Ix Zero-sequence current V UNB% Voltage unbalance I UNB% Current unbalance Ix UNB% Ix current unbalance VDC DC voltage			
Inx Inx current V ZERO-SEQ Zero-sequence voltage I ZERO-SEQ Zero-sequence current Ix ZERO-SEQ Ix Zero-sequence current V UNB% Voltage unbalance I UNB% Current unbalance Ix UNB% Ix current unbalance VDC DC voltage			
V ZERO-SEQ Zero-sequence voltage I ZERO-SEQ Zero-sequence current Ix ZERO-SEQ Ix Zero-sequence current V UNB% Voltage unbalance I UNB% Current unbalance Ix UNB% Ix current unbalance VDC DC voltage			
I ZERO-SEQ Zero-sequence current Ix ZERO-SEQ Ix Zero-sequence current V UNB% Voltage unbalance I UNB% Current unbalance Ix UNB% Ix current unbalance VDC DC voltage			
Ix ZERO-SEQ Ix Zero-sequence current V UNB% Voltage unbalance I UNB% Current unbalance Ix UNB% Ix current unbalance VDC DC voltage			
V UNB% Voltage unbalance I UNB% Current unbalance Ix UNB% Ix current unbalance VDC DC voltage	x ZERO-SEQ		
UNB% Current unbalance Ix UNB% Ix current unbalance VDC DC voltage	V UNB%		
Ix UNB% Ix current unbalance VDC DC voltage			
VDC DC voltage	Ix UNB%		
	VDC		
	FREQ		

Designation	Description
V PSEC	Positive-sequence Voltage
V ZSEC UNB%	Zero-sequence Voltage Unbalance
RMS (10 min)	10-Minute RMS Values
V1	V1 voltage
V2	V2 voltage
V3	V3 voltage
V4	V4 voltage
V12	V12 voltage
V23	V23 voltage
V23 V31	V31 voltage
11	1 current
12	2 current
13	I3 current
13	l4 current
	In current
ln l1x	
	1x current
l2x l3x	2x current
	3x current
l4x	4x current
	Inx current
V ZERO-SEQ	Zero-sequence voltage
I ZERO-SEQ	Zero-sequence current
IX ZERO-SEQ	x Zero-sequence current
V UNB%	Voltage unbalance
UNB%	Current unbalance
Ix UNB%	Ix current unbalance
VDC	DC voltage
FREQ	Frequency
V PSEC	Positive-sequence Voltage
V ZSEC UNB%	Zero-sequence Voltage Unbalance
RMS (2 hour)	2-Hour RMS Values
V1	V1 voltage
V2	V2 voltage
V3	V3 voltage
V4	V4 voltage
V12	V12 voltage
V23	V23 voltage
V31	V31 voltage
11	11 current
12	2 current
13	13 current
14	4 current
In	In current
l1x	1x current
2x	2x current
I3x	I3x current
l4x	l4x current
Inx	Inx current
V ZERO-SEQ	Zero-sequence voltage
ZERO-SEQ	Zero-sequence current
x ZERO-SEQ	x Zero-sequence current
V UNB%	Voltage unbalance
UNB%	Current unbalance
IX UNB%	x current unbalance
VDC	DC voltage
FREQ	Frequency
V PSEC	Positive-sequence Voltage
V ZSEC UNB%	Zero-sequence Voltage Unbalance
HRM TOT (0.2 sec)	0.2-Second Total Harmonics
V1 THD	V1/V12 THD ¹
V2 THD	V2/V23 THD ¹
V3 THD	V3/V31 THD ¹
V4 THD	V4 THD
I1 THD	I1 THD
I2 THD	12 THD
וצ ו הט	
	I3 THD
I3 THD	I3 THD 4 THD
	I3 THD I4 THD V1/V12 interharmonics THD ¹

_ _

	Description
Designation V2 THD/I	V2/V23 interharmonics THD ¹
V3 THD/I	· ·
V4 THD/I	V3/V31 interharmonics THD ¹
11 THD/I	V4 interharmonics THD I1 interharmonics THD
12 THD/I	2 internarmonics THD
13 THD/I	I3 interharmonics THD
14 THD/I	I4 interharmonics THD
I1 TDD	1 TDD
I2 TDD	2 TDD
13 TDD	I3 TDD
I4 TDD	I4 TDD
I1 KF	I1 K-Factor
12 KF	2 K-Factor
13 KF	3 K-Factor
I4 KF	4 K-Factor
V1 CF	V1/V12 Crest Factor ¹
V2 CF	V2/V23 Crest Factor ¹
V3 CF	V3/V31 Crest Factor ¹
V4 CF	V4 Crest Factor
11 CF	1 Crest Factor
12 CF	2 Crest Factor
13 CF	I3 Crest Factor
I4 CF	I4 Crest Factor
HRM TOT (3 sec)	3-Second Total Harmonics
V1 THD	V1/V12 THD ¹
V2 THD	V2/V23 THD ¹
V3 THD	V3/V31 THD ¹
V4 THD	V4 THD
I1 THD	I1 THD
12 THD	12 THD
I3 THD	I3 THD
I4 THD	I4 THD
V1 THD/I	V1/V12 interharmonics THD ¹
V2 THD/I	V2/V23 interharmonics THD ¹
V3 THD/I	V3/V31 interharmonics THD ¹
V4 THD/I	V4 interharmonics THD
11 THD/I	1 interharmonics THD
12 THD/I	2 interharmonics THD
13 THD/I	I3 interharmonics THD
I4 THD/I	4 interharmonics THD
I1 TDD	I1 TDD
I2 TDD	12 TDD
I3 TDD	3 TDD
I4 TDD	I4 TDD
I1 KF	1 K-Factor
12 KF	2 K-Factor
13 KF	3 K-Factor
I4 KF	4 K-Factor
V1 CF	V1/V12 Crest Factor ¹
V2 CF	V2/V23 Crest Factor ¹
V3 CF	V3/V31 Crest Factor ¹
V4 CF	V4 Crest Factor
I1 CF	11 Crest Factor
I2 CF	2 Crest Factor
I3 CF	3 Crest Factor
I4 CF	4 Crest Factor
HRM TOT (10 min)	10-Minute Total Harmonics
V1 THD	V1/V12 THD ¹
V2 THD	V2/V23 THD ¹
V3 THD	V3/V31 THD ¹
	V4 THD
V4 THD	
V4 THD I1 THD	I1 THD
	11 THD 12 THD
I1 THD	

Designation	Description
V1 THD/I	V1/V12 interharmonics THD ¹
V2 THD/I	V2/V23 internarmonics THD ¹
V3 THD/I	
	V3/V31 interharmonics THD ¹
V4 THD/I	V4 interharmonics THD
I1 THD/I	11 interharmonics THD
12 THD/I	2 interharmonics THD
I3 THD/I	3 interharmonics THD
I4 THD/I I1 TDD	I4 interharmonics THD
12 TDD	2 TDD
3 TDD	3 TDD
4 TDD	4 TDD
11 KF	1 K-Factor
2 KF	2 K-Factor
13 KF	3 K-Factor
14 KF	4 K-Factor
V1 CF	V1/V12 Crest Factor ¹
V2 CF	V2/V23 Crest Factor ¹
V3 CF	
V3 CF V4 CF	V3/V31 Crest Factor ¹
V4 CF I1 CF	V4 Crest Factor
11 CF 12 CF	2 Crest Factor
13 CF	3 Crest Factor
13 CF 14 CF	4 Crest Factor
HRM TOT (2 hour)	2-Hour Total Harmonics
V1 THD	V1/V12 THD ¹
V2 THD	V2/V23 THD ¹
V3 THD	
-	V3/V31 THD ¹
V4 THD	V4 THD
I1 THD	1 THD
I2 THD I3 THD	2 THD 3 THD
I4 THD	I4 THD
V1 THD/I	
V2 THD/I	V1/V12 interharmonics THD 1
	V2/V23 interharmonics THD 1
V3 THD/I	V3/V31 interharmonics THD ¹
V4 THD/I	V4 interharmonics THD
I1 THD/I	11 interharmonics THD
12 THD/I	2 interharmonics THD 3 interharmonics THD
I3 THD/I	4 internarmonics THD
14 THD/I 11 TDD	11 TDD
2 TDD	2 TDD
12 TDD 13 TDD	3 TDD
4 TDD	4 TDD
11 KF	I1 K-Factor
12 KF	2 K-Factor
13 KF	I3 K-Factor
14 KF	I4 K-Factor
V1 CF	V1/V12 Crest Factor ¹
V2 CF	V2/V23 Crest Factor ¹
V3 CF	V3/V31 Crest Factor ¹
V4 CF	V3/V31 Crest Factor
11 CF	1 Crest Factor
12 CF	2 Crest Factor
12 CF 13 CF	3 Crest Factor
4 CF	4 Crest Factor
PHASORS	Phasors
V1 Mag	V1/V12 Voltage magnitude ¹
V2 Mag	V2/V23 Voltage magnitude ¹
V3 Mag	
-	V3/V31 Voltage magnitude ¹
V4 Mag	V4 Voltage magnitude
I1 Mag	1 Current magnitude
I2 Mag	2 Current magnitude
13 Mag	3 Current magnitude

4 Mag 4 Current magnitude V1 Ang V1/V12 Voltage angle1 V2 Ang V2/V23 Voltage angle1 V3 Ang V3/V31 Voltage angle1 V3 Ang V3/V31 Voltage angle1 1 Ang 1 Current angle 2 Ang 2 Current angle 3 Ang 13 Current angle 3 Ang 3 Current angle 3 Ang 2 Current magnitude 2 Ang 2 Current magnitude 2 Mag 1 X Current magnitude 2 Mag 1 X Current magnitude 2 Ang 1 X Current angle 3 Ang 3 Current angle 3 Ang 3 X Current angle 3 Ang 3 X Current angle 3 Ang 4 Current angle 3 Ang 4 Current angle 3 Ang 3 Current angle 4 X Ang 4 X Current angle 2 DMD V1/V12 Volt demand1 2 DMD V2/V23 Volt demand1 2 DMD 1 Ampere demand 3 DMD 3 Ampere demand 2 DMD 2 Mapere demand 2 MW IMP BD Kv import block demand Kv A BD	Designation	Description
1/1 Ang 1/1/12 Voltage angle1 1/2 Ang V2/V23 Voltage angle1 1/3 Ang V2/V23 Voltage angle1 1/4 Ang V4 Voltage angle 1/4 Ang V4 Voltage angle 2 Ang 12 Current angle 2 Ang 12 Current angle 3 Ang 13 Current angle 4 Ang 14 Current magnitude 2x Mag 2x Current magnitude 3x Mag 3x Current angle 2x Ang 2x Current angle 3x Ang 3x Current angle 3x Ang 4x Current angle 3x Ang 4x Current angle 3x Ang 4x Current angle 3x Ang 4x Current angle 3x Ang 4x Current angle 3x Ang 4x Current angle 3x Ang 4x Current angle 3x Ang 4x Current angle 3x Ang 4x Current angle 3x Ang 4x Current angle 3x Ang 4x Current angle 3x Ang 4x Current angle 3x Ang 4x Current angle 3x Ang 5x Current angle 4x Ang <t< th=""><th>v</th><th></th></t<>	v	
V2 Ang V2/V23 Voitage angle1 V3 Ang V3/V31 Voitage angle1 V3 Ang V3/V31 Voitage angle1 1 Ang I Current angle 3 Ang 3 Current angle 3 Ang 3 Current angle 3 Ang 3 Current angle 3 Ang 3 Current angle 2 Amg 2 Current angle 3 Mag 3 Current angle 2 Mag 2 Current angle 3 Ang 1 Current angle 2 Ang 2 Current angle 2 Ang 2 Current angle 3 Ang 4 Current angle 2 Ang 2 Current angle 3 Ang 4 Current angle 2 Ang 2 Current angle 3 Ang 4 Current angle 2 DMD V2/V3 V01 demand1 1 DMD 1 Ampere demand 3 DMD V3/V31 V01 demand1 1 DMD 1 Ampere demand 3 VMD V2/V2/V3 V01 demand1 1 DMD 1 Ampere demand 3 DMD 2 Ampere demand 3 DMD 3 Ampere demand VA RED KVA block demand	V1 Ang	
V3 Ang V3/V31 Voltage angle V4 Ang V4 Voltage angle V4 Ang V4 Voltage angle 1 Ang I Current angle 2 Ang I 2 Current angle 3 Ang I 3 Current angle 4 Ang I 4 Current anglitude 2 Mag I 3 Current anglitude 2 Mag I 3 Current anglitude 2 Mag I 3 Current angle 2 Ang I 2 Current angle 2 Ang I 2 Current angle 2 Ang I 2 Current angle 2 Ang I 2 Current angle 2 Ang I 2 Current angle 2 Ang I 2 Current angle 2 Ang I 2 Current angle 2 Ang I 2 Current angle 2 Ang I 2 Current angle 2 Ang I 2 Current angle 2 Ang I 2 Curre	U	
44 Ang V4 Voltage angle 1 Ang 1 Current angle 2 Ang 12 Current angle 2 Ang 13 Current angle 3 Ang 13 Current angle 4 Ang 1X Current angle 1X Mag 1X Current magnitude 2X Mag 2X Current magnitude 3X Mag 13 Current angle 3X Mag 13 Current angle 2X Ang 14 Current angle 3X Ang 13 Current angle 3X Ang 13 Current angle 3X Ang 13 Current angle 2X Ang 14 Current angle 2X Ang 14 Current angle 2M Ang 14 Current angle 2M Ang 14 Current angle 2M Ang 14 Current angle 2M Ang 14 Current angle 2M Ang 14 Current angle 2M Ang 14 Current angle 2M Ang 14 Current angle 2M Ang 14 Current angle 2M Ang 14 Current angle 2M Ang 14 Current angle 2M Ang 14 Current angle 2M Ang 14 Current angle <td>3</td> <td></td>	3	
1 Ang 1 Current angle 1 Current angle 2 Ang 2 Current angle 3 Ang 3 Current angle 4 Ang 4 Current angle 4 Ang 4 Current angle 4 Ang 4 Current angle 4 Current angle 4 Ang 5 Current angle 4 Current angle 5 Current 5 Curr	_	
2 Ang 2 Current angle 3 Ang 3 Current angle 4 Ang 4 Current angle 1 x Mag 1 x Current magnitude 2 X Mag 2 x Current magnitude 3 x Mag 3 x Current magnitude 3 x Mag 3 x Current angle 2 x Ang 3 x Current angle 3 x Ang 1 x Current angle 3 x Ang 3 x Current angle 3 x Ang 3 x Current angle 3 x Ang 3 x Current angle 3 x Ang 3 x Current angle 2 x Ang 3 x Current angle 2 x Ang 3 x Current angle 2 MDD 7 2 V 1 x 1 2 V oft demand ¹ 2 DMD 7 V 1 x 1 2 V oft demand ¹ 2 DMD 7 V 2 x V 3 V oft demand ¹ 2 DMD 7 V 2 x V 3 V oft demand ¹ 2 DMD 7 X 2 X V 1 V oft demand ¹ 2 DMD 7 X 2 X V 1 V oft demand ¹ 2 DMD 7 X 2 X V 1 V oft demand ¹ 2 DMD 8 X W import block demand 3 DMD 8 X W import block demand 2 DMD 2 Ampere demand 3 DMD 8 X W import block demand 2 W IMP BD K W import block demand 2 W IMP BD K V import block demand 2 W IMP SD K V x ar import block demand 2 W IMP SD K V x ar import block demand 2 W IMP SD K V x ar import block demand 2 W IMP SD K V x ar import block demand 2 W IMP SD K V x ar import block demand 2 W IMP CC DMD X V A accumulated demand 2 W IMP ACC DMD K V ar import predicted sliding window demand 2 V A AD K V A predicted sliding window demand 2 V A PRD DMD K V ar cumulated demand 2 V A PRD DMD K V ar cumulated demand 2 V A PRD DMD K V ar accumulated demand 2 V A PRD DMD K V ar accumulated demand 2 V A PRD DMD K V ar accumulated demand 2 V A PRD DMD K V ar accumulated demand 2 V A PRD DMD K V ar accumulated demand 2 V A PRD DMD K V ar accumulated demand 2 V A PRD DMD K V ar accumulated demand 2 V A PRD DMD K V ar accumulated demand 2 V A PRD DMD K V ar accumulated demand 2 V A PRD DMD K V ar accumulated demand 2 V A PRD DMD K V ar accumulated demand 2 V A PRD DMD K V ar accomulated demand 2 V A PRD DMD K V ar accomulated demand 2 V A PRD DMD K V ar accomulated demand 2 V A PRD DMD K V ar accomulated demand 2 V A PRD DMD K V ar accomulated demand 3 T HD DMD 1 Ampere demand 4 DMD 1 Ampere demand 4 DMD 1 Ampere demand 4 DMD 1 Ampere demand 4 DMD 1 Ampe		
4 Ang 4 Current anglitude 2x Mag 1x Current magnitude 2x Mag 3x Current magnitude 3x Mag 3x Current magnitude 3x Mag 4x Current magnitude 1x Ang 1x Current angle 2x Ang 3x Current angle 3x Ang 3x Current angle 3x Ang 3x Current angle 2x Ang 3x Current angle 2x Ang 3x Current angle 2x Ang 3x Current angle 2x Ang 3x Current angle 2MD V2/V23 Volt demand ¹ 2DMD V3/V3 1 Volt demand ¹ 3DMD V3/V3 1 Volt demand ¹ 2DMD 2 Ampere demand 3DMD 3 Ampere demand 2W IMP BD KW import block demand VA BD KV import block demand VA BD KV import sliding window demand VA BD KV ar import sliding window demand VA ACC DMD VA accumulated demand VA Accumulated demand VA Accumulated demand VA Are predicted sliding window demand VA Are predicted sliding window demand VA PRD DMD KV are inport	I2 Ang	
1x Mag 1x Current magnitude 2x Mag 2x Current magnitude 3x Mag 3x Current magnitude 4x Mag 4x Current magnitude 1x Ang 1x Current angle 2x Ang 2x Current angle 3x Ang 3x Current angle 2x Ang 4x Current angle 3x Ang 4x Current angle 2x Map 4x Current angle 3x Ang 3x Current angle 2 MDD V1/V12 Volt demand ¹ /1 DMD V1/V12 Volt demand ¹ /2 DMD V2/V23 Volt demand ¹ /3 DMD 3 Ampere demand 2 DMD 2 Ampere demand 2 MDD 3 Ampere demand 2 MMD 3 Ampere demand 2 MMD 3 Ampere demand 2 Wi MP SD KW import blick demand VA BD K/A block demand VA BD K/A block demand VA SD KV anjort sliding window demand VA ACD DMD KVA accumulated demand VA ACD DMD KVA accumulated demand VA ACC DMD KVA accumulated demand VA ACC DMD KVA accumulated de	I3 Ang	3 Current angle
2x Mag 2x Current magnitude 3x Mag 3x Current magnitude 4x Mag 4x Current magnitude 1x Ang 1x Current angle 2x Ang 3x Current angle 3x Ang 3x Current angle 3x Ang 3x Current angle 2x Ang 3x Current angle 2x Ang 3x Current angle 2x Mag 4x Current angle 2MDD V2/V23 Volt demand ¹ 2DDD V2/V23 Volt demand ¹ 3DMD V3/V3 Volt demand ¹ 1DMD 1 Ampere demand WIMP BD Kw import block demand var IMP ACC bMD Xar import block demand VVA BD Kw import sliding window demand var IMP ACC DMD V4 import accumulated demand var IMP ACC DMD Kvar import accumulated demand var IMP ACC DMD Kvar import predicted sliding window demand var IMP ACC DMD Kvar export block demand var IMP ACC DMD Kvar export block demand var EXP BD Kvar export block demand var EXP BD Kvar export block demand var EXP BD Kvar export block demand	l4 Ang	· · · · · · · · · · · · · · · · · · ·
3x Mag 3x Current magnitude 4x Mag 4x Current magnitude 1x Ang 1x Current angle 2x Ang 2x Current angle 3x Ang 3x Current angle 2x Ang 4x Current angle 4x Ang 4x Current angle 2x MD 1/1/12 Volt demand ¹ // DMD 1/1/12 Volt demand ¹ // DMD 1/2/2 Volt demand ¹ // DMD 1/2/2 Volt demand ¹ // DMD 1/3 Ampere demand 2 DMD 2 Ampere demand 3 DMD 3 Ampere demand var IMP BD kw import block demand var IMP BD kw import block demand var IMP SD KW import sliding window demand var IMP SD KW import accumulated demand var IMP PRD DMD kar import predicted sliding window demand var IMP PRD DMD Kvar import predicted sliding window demand var IMP PRD DMD Kvar import predicted sliding window demand var IMP PRD DMD Kvar export block demand vva FXP BD Kvar export block demand var EXP BD Kvar export block demand var EXP BD Kvar export		
4x. Mag 4x Current magnitude 1x Ang 1x Current angle 2x Ang 1x Current angle 3x Ang 1x Current angle 3x Ang 1x Current angle 3x Ang 1x Current angle 3x Ang 1x Current angle 2x Ang 1x Current angle 2x Ang 1x Current angle 2 MDD 1/1/12 Volt demand ¹ /2 DMD 2/2/23 Volt demand ¹ /3 DMD 3/1/1/12 Volt demand ¹ /2 DMD 1 Ampere demand 2 MD 2 Ampere demand 3 DMD 3 Ampere demand wi IMP BD KV import block demand vear IMP BD kvar import sliding window demand vear IMP ACC DMD kvar import accumulated demand vear IMP ACC DMD kvar import accumulated demand vvar MP ACC DMD kvar import accumulated demand vear IMP ACC DMD kvar export block demand vear MP ACD DMD kvar export block demand vvar MP ACD DMD kvar export sliding window demand vear MP ACD DMD kvar export sliding window demand vear EXP BD kvar export sliding window deman	U	
1x Ang 1x Current angle 2x Ang 2x Current angle 3x Ang 1x Current angle 5K Ang 4x Current angle 5EMANDS Present Demands 71 DMD V1/V12 Volt demand ¹ 72 DMD V2/V23 Volt demand ¹ 73 DMD V3/V31 Volt demand ¹ 74 DMD 1 Ampere demand 2 DMD 2 Avy31 Volt demand ¹ 2 DMD 1 Ampere demand 3 DMD 3 Ampere demand 3 DMD 3 Ampere demand var IMP BD kvar import block demand var IMP BD kvar import block demand var IMP SD KVA block demand var IMP SD kVa import sliding window demand var IMP SD kVA import accumulated demand vA ACC DMD kVA accumulated demand vA ACC DMD kVA accumulated demand var IMP PRD DMD kW import predicted sliding window demand var IMP PRD DMD kW aport block demand var EXP BD kvar export sliding window demand var EXP BD kvar export sliding window demand var EXP BD kvar export sliding window demand		
2x Ang 2x Current angle 3x Ang 3x Current angle 3x Ang 4x Current angle 4x Ang 4x Current angle DEMANDS Present Demands V1 DMD V1/V12 Volt demand ¹ 20 DMD V2/V23 Volt demand ¹ 30 DMD V3/V31 Volt demand ¹ 30 DMD 1 Ampere demand 20 MD 2 Ampere demand 30 DMD 3 Ampere demand war IMP BD KW import block demand VA BD KVA block demand war IMP SD kwar import sliding window demand var IMP SD kvar import sliding window demand var IMP ACC DMD KVA sliding window demand var IMP ACC DMD KVA predicted sliding window demand var IMP ACC DMD KVA predicted sliding window demand var IMP ACC DMD KVA predicted sliding window demand var IMP PRD DMD KVA predicted sliding window demand var IMP PRD DMD KVA predicted sliding window demand var EXP BD Kvar export sliding window demand var EXP BD Kvar export sliding window demand var EXP BD Kvar export sliding window demand		5
3x Ang 3x Current angle 4x Ang 4x Current angle EMANDS Present Demands 71 DMD 11/V12 Volt demand ¹ 22 DMD V2/V23 Volt demand ¹ 33 DMD V3/V31 Volt demand ¹ 10 MD 1 Ampere demand 2 DMD 12 Ampere demand 3 DMD 3 Ampere demand 3 DMD 3 Ampere demand war IMP BD KW import block demand WI MP SD WW import block demand WM BD W import block demand WA ADD W import block demand WA SD KVA block demand VA ADD KVA sliding window demand VA ADD KVA accumulated demand VA ACC DMD KVA accumulated demand VA ACC DMD KV accumulated demand VA ACC DMD KV accumulated demand VA ACC DMD KV accumulated demand VA ACC DMD KV accumulated demand VA PRD DMD KV aprotiticed sliding window demand Var EXP BD KV export block demand Var EXP BD KV export block demand Var EXP SD KV export block demand <td>12x Ang</td> <td>5</td>	12x Ang	5
DEMANDS Present Demands V1 DMD V1/V12 Volt demand ¹ 22 DMD V2/V23 Volt demand ¹ V3 DMD V3/V31 Volt demand ¹ 1 DMD 11 Ampere demand 2 DMD 12 Ampere demand 3 DMD 13 Ampere demand 3 DMD 13 Ampere demand WIMP BD Kwar import block demand var IMP BD Kvar import block demand VA BD KVA block demand VVI IMP SD KVw import sliding window demand VVI IMP ACC DMD KVa rimport sliding window demand VVI IMP ACC DMD KVa import recumulated demand VVA ACC DMD KVa import recited sliding window demand VVA ACC DMD KVA accumulated demand VA ACC DMD KVA accumulated demand VA ACC DMD KVA precited sliding window demand VA PRD DMD Kvar report precited sliding window demand VA PRD DMD Kvar report block demand VVA PRD DMD Kvar report block demand VVA PRD DMD Kvar report block demand VVA PRD DMD Kvar report block demand VW EXP PRD DMD Kvar export block demand	I3x Ang	· · · · · · · · · · · · · · · · · · ·
V1 DMD V1/V12 Volt demand ¹ V2 DMD V2/V23 Volt demand ¹ V3 DMD V3/V31 Volt demand ¹ 1 DMD 11 Ampere demand 2 DMD 12 Ampere demand 3 DMD 13 Ampere demand 0 DMD 13 Ampere demand war IMP BD Kwar import block demand vvar IMP BD kvar import sliding window demand vvar IMP SD Kvar import sliding window demand vvar IMP ACC DMD KVA slicking window demand vvar IMP ACC DMD KVA slicking window demand vvar IMP ACC DMD KVA scilicing window demand vvar IMP ACC DMD KVA isolacumulated demand vvar IMP ACC DMD KVA import redicted sliding window demand vvar IMP PRD DMD KVar import predicted sliding window demand vvar IMP PRD DMD KVar export block demand vvar ENP DMD KVar export block demand vvar ENP BD Kvar export sliding window demand vvar EXP BD Kvar export block demand vvar EXP BD Kvar export block demand vvar EXP SD KWe export accumulated demand vvar EXP SD KWe export predicted sliding window demand <tr< td=""><td>l4x Ang</td><td>4x Current angle</td></tr<>	l4x Ang	4x Current angle
22 DMD V2/V23 Volt demand ¹ /3 DMD V3/V31 Volt demand ¹ 1 DMD 11 Ampere demand 2 DMD 12 Ampere demand 3 DMD 13 Ampere demand 3 DMD 13 Ampere demand 3 DMD 13 Ampere demand WI IMP BD KW import block demand vvar IMP BD kVa miport block demand vvar IMP SD kW import sliding window demand vvar IMP SD kW import sliding window demand vvar IMP ACC DMD kVA sliding window demand vvar IMP ACC DMD kW import accumulated demand vvar AL ACC DMD kW import predicted sliding window demand vvar AL ACC DMD kW import predicted sliding window demand vvar AL PR D DMD kVA predicted sliding window demand vvar EXP BD kWa report block demand vvar EXP BD kWar export block demand vvar EXP BD kWar export block demand vvar EXP SD kWar export block demand vvar EXP SD kWar export predicted sliding window demand vvar EXP SD kWar export predicted sliding window demand vvar EXP PRD DMD kWe export accumulated demand	DEMANDS	Present Demands
Y3 DMD Y3/Y31 Volt demand ¹ 1 DMD 11 Ampere demand 2 DMD 2 Ampere demand 3 DMD 13 Ampere demand 3 DMD 3 Ampere demand wr IMP BD KW import block demand war IMP BD kvar import block demand war IMP SD kvar import block demand war IMP SD kvar import block demand war IMP ACC DMD kVA sliding window demand war IMP ACC DMD kvar import accumulated demand var IMP ACC DMD kvar import accumulated demand var IMP ACC DMD kvar import predicted sliding window demand var IMP ACC DMD kvar import predicted sliding window demand var IMP ACC DMD kvar import predicted sliding window demand var IMP ACC DMD kvar import predicted sliding window demand var ENP ADD kvar export block demand var ENP BD kvar export block demand var EXP BD kvar export block demand var EXP ACC DMD kvar export block demand var EXP SD kwar export sliding window demand var EXP SD kvar export block demand var EXP SD kvar export predicted sliding window demand<	V1 DMD	V1/V12 Volt demand ¹
1 DMD 1 Ampere demand 2 DMD 2 Ampere demand 3 DMD 3 Ampere demand will MP BD kW import block demand (W IMP BD kW import block demand (W IMP SD kW import block demand (W IMP SD kW import block demand (W IMP SD kW import sliding window demand (W IMP SD kVA sliding window demand (W IMP ACC DMD kW import accumulated demand (W ACC DMD kW ari mort accumulated demand (VA ACC DMD kVa rimport predicted sliding window demand (VA ACC DMD kVa rimport predicted sliding window demand (VA ACC DMD kVa recompt predicted sliding window demand (VA ACC DMD kVa report predicted sliding window demand (VA ACC DMD kVa report block demand (VA EXP DD W export block demand (VA EXP BD kVa export block demand (VA EXP SD kW export accumulated demand (Var EXP SD kW export sliding window demand (Var EXP SD kW export sliding window demand (Var EXP SD kW export predicted sliding window demand (Var EXP PRD DMD kW export predicted sliding windo	V2 DMD	V2/V23 Volt demand ¹
2 DMD 2 Ampere demand 3 DMD 3 Ampere demand WI IMP BD KW import block demand vvar IMP BD kVa import block demand VA BD KVA block demand VV IMP SD kW import sliding window demand vvar IMP SD kW import sliding window demand vVA SD kVa sliding window demand vVA SD kVa sliding window demand vVI IMP ACC DMD kW import accumulated demand vvar IMP ACC DMD kW import accumulated demand vVA ACC DMD kVa import predicted sliding window demand vVA ACC DMD kVa import predicted sliding window demand vvar EXP BD kvar export block demand vvar EXP BD kvar export block demand vvar EXP BD kvar export sliding window demand vvar EXP BD kvar export sliding window demand vvar EXP BD kvar export sliding window demand vvar EXP BD kvar export predicted sliding window demand vvar EXP ACC DMD KV export predicted sliding window demand vvar EXP BD kvar export predicted sliding window demand vvar EXP ACC DMD KV export predicted sliding window demand var EX	V3 DMD	
3 DMD 3 Ampere demand WI IMP BD WV import block demand var IMP BD kvar import block demand var IMP SD kvar import block demand var IMP SD kvar import sliding window demand var IMP ACC DMD kV import accumulated demand var IMP ACC DMD kV import accumulated demand var IMP ACC DMD kV import accumulated demand var IMP ACC DMD kV accumulated demand var IMP PRD DMD kV accumulated demand var IMP PRD DMD kV accumulated demand var IMP PRD DMD kV accumulated demand var IMP PRD DMD kV apredicted sliding window demand var IMP PRD DMD kV apredicted sliding window demand var EXP DDMD kV export block demand var EXP BD kV export sliding window demand var EXP SD kV export accumulated demand var EXP ACC DMD kV export	11 DMD	
WIMP BD Wimport block demand vvar IMP BD kvar import block demand vvA BD KVA block demand dWIMP SD kwimport sliding window demand vvar IMP SD kvar import sliding window demand vvar IMP SD kvar import sliding window demand vvar IMP ACC DMD kVa sliding window demand vvar IMP ACC DMD kvar import accumulated demand vvar IMP PAC DMD kvar import predicted sliding window demand vvar IMP PRD DMD kvar import predicted sliding window demand vvar IMP PRD DMD kvar import predicted sliding window demand vvar EXP BD kvar export block demand vvar EXP BD kvar export sliding window demand vvar EXP SD kvar export sliding window demand vvar EXP ACC DMD kvar export sliding window demand vvar EXP SD kvar export predicted sliding window demand var EXP ACC DMD kvar export predicted sliding window demand var EXP ACC DMD	12 DMD	
svar IMP BD kvar import block demand V/A BD k/VA block demand vW IMP SD kW import sliding window demand svar IMP SD kVa sliding window demand vVI MP ACC DMD kVA sliding window demand vVI MP ACC DMD kVa scumulated demand vvar IMP ACC DMD kVa accumulated demand vVI MP PRD DMD kVa accumulated demand vVI MP PRD DMD kVa accumulated demand vvar IMP PRD DMD kVa accumulated demand vvar IMP PRD DMD kVa accumulated demand vvar IMP PRD DMD kVa accumulated demand vvar IMP PRD DMD kVa accumulated demand vvar IMP PRD DMD kVa accumulated acmand vvar IMP PRD DMD kVa predicted sliding window demand vvar EXP BD kW export sliding window demand vvar EXP BD kW export accumulated demand vvar EXP ACC DMD kW export accumulated demand vvar EXP PRD DMD kwar export accumulated demand vvar EXP PRD DMD kwar export accumulated demand vvar EXP PRD DMD kwar export accumulated demand vvar EXP PRD DMD kwar export	I3 DMD	
AVA BD kVA block demand WI MP SD kW import sliding window demand var IMP SD kvar import sliding window demand kVA SD kVA sliding window demand var IMP ACC DMD kWa import accumulated demand var IMP ACC DMD kVa scumulated demand var IMP ACC DMD kVa accumulated demand var IMP PRD DMD kvar import predicted sliding window demand vvar IMP PRD DMD kvar import predicted sliding window demand vvar IMP PRD DMD kvar export block demand vvar IMP ACC DMD kVa predicted sliding window demand vvar EXP BD kvar export block demand var EXP BD kvar export sliding window demand var EXP BD kvar export sliding window demand var EXP SD kvar export sliding window demand var EXP SD kvar export accumulated demand var EXP ACC DMD kw export predicted sliding window demand var EXP SD kvar export accumulated demand var EXP ACC DMD kw export predicted sliding window demand var EXP PRD DMD kw export predicted sliding window demand var EXP PRD DMD kw export predicted sliding window demand var EXP PRD DMD<		
WIMP SD kW import sliding window demand vvar IMP SD kvar import sliding window demand vvA SD kVA sliding window demand vVA SD kVA sliding window demand vvar IMP ACC DMD kW import accumulated demand vvar IMP ACC DMD kVa cumulated demand vvar IMP PRD DMD kVa accumulated demand vvar IMP PRD DMD kVa accumulated demand vvar IMP PRD DMD kVa rimport predicted sliding window demand vvar EXP BD kVa remot predicted sliding window demand vvar EXP BD kVa export block demand vvar EXP BD kvar export block demand vvar EXP SD kW export sliding window demand vvar EXP SD kW export accumulated demand vvar EXP ACC DMD kVar export redicted sliding window demand vvar EXP ACC DMD kvar export accumulated demand vvar EXP PRD DMD kvar export accumulated demand vvar EXP PRD DMD kvar export predicted sliding window demand var EXP PRD DMD kvar export accumulated demand var EXP PRD DMD kvar export predicted sliding window demand var EXP PRD DMD kvar export accumulated demand var EXP PRD DMD		
evar IMP SD kvar import sliding window demand kVA SD kVA sliding window demand kVI IMP ACC DMD kW simport accumulated demand kvar IMP ACC DMD kvar import accumulated demand kvar IMP PRD DMD kV import predicted sliding window demand kvar IMP PRD DMD kV import predicted sliding window demand kvar IMP PRD DMD kVa predicted sliding window demand kvar IMP PRD DMD kVa predicted sliding window demand kvar EXP BD kVa export block demand kvar EXP SD kVa export sliding window demand kvar EXP SD kvar export sliding window demand kvar EXP SD kvar export sliding window demand kvar EXP ACC DMD kvar export predicted sliding window demand kvar EXP ACC DMD kvar export predicted sliding window demand kvar EXP ACC DMD kvar export predicted sliding window demand kvar EXP ACC DMD kvar export predicted sliding window demand kvar EXP ACC DMD kvar export predicted sliding window demand kvar EXP ACC DMD kvar export predicted sliding window demand kvar EXP ACC DMD kvar export predicted sliding window demand kvar EXP ACC DMD <td></td> <td></td>		
kVA SD kVA sliding window demand kW IMP ACC DMD kV import accumulated demand xvar IMP ACC DMD kVa import accumulated demand xvar IMP ACC DMD kVA accumulated demand xvar IMP PRD DMD kVW import predicted sliding window demand xvar IMP PRD DMD kVa rimport predicted sliding window demand xvar IMP PRD DMD kVa predicted sliding window demand xvar EXP BD kVw export block demand xvar EXP BD kW export block demand xvar EXP SD kvar export block demand xvar EXP SD kvar export sliding window demand xvar EXP SD kvar export sliding window demand xvar EXP SD kvar export sliding window demand xvar EXP SD kvar export sliding window demand xvar EXP SD kvar export sliding window demand xvar EXP ACC DMD kvar export accumulated demand xvar EXP PRD DMD kVe export accumulated demand xvar EXP PRD DMD kvar export predicted sliding window demand xvar EXP PRD DMD kvar export predicted sliding window demand xvar EXP PRD DMD kvar export predicted sliding window demand xvar EXP ACC DMD kvar export predicted sliding window demand	kvar IMP SD	
avar IMP ACC DMD kvar import accumulated demand vVA ACC DMD kVA accumulated demand wV IMP PRD DMD kW import predicted sliding window demand vvar IMP PRD DMD kvar import predicted sliding window demand vvar IMP PRD DMD kVa predicted sliding window demand vvar IMP RD DMD kVA predicted sliding window demand vvar EXP BD kVa export block demand vvar EXP BD kvar export block demand vvar EXP SD kvar export accumulated demand vvar EXP ACC DMD kW export accumulated demand vvar EXP ACC DMD kW export predicted sliding window demand vvar EXP RD DMD kW export predicted sliding window demand vvar EXP RD DMD kW export predicted sliding window demand vvar EXP RD DMD kwar export predicted sliding window demand var EXP PRD DMD kvar export predicted sliding window demand var EXP PRD DMD kvar export predicted sliding window demand var EXP PRD DMD kvar export predicted sliding window demand var EXP PRD DMD kvar export predicted sliding window demand var EXP PRD DMD kvar export predicted sliding window demand var EXP PRD D	kVA SD	
AVA ACC DMD kVA accumulated demand W/ IMP PRD DMD kW import predicted sliding window demand vva rIMP PRD DMD kvar import predicted sliding window demand vVA PRD DMD kVA predicted sliding window demand vVA PRD DMD kVA predicted sliding window demand vVA PRD DMD kVA predicted sliding window demand vVA PRD DMD kVA predicted sliding window demand vVA PRD DMD kVe prort block demand vvar EXP BD kvar export sliding window demand vvar EXP SD kvar export sliding window demand vvar EXP ACC DMD kW export predicted sliding window demand vvar EXP ACC DMD kVe export predicted sliding window demand vvar EXP PRD DMD kvar export predicted sliding window demand vvar EXP PRD DMD kvar export predicted sliding window demand vvar EXP PRD DMD kvar export predicted sliding window demand vvar EXP PRD DMD kvar export predicted sliding window demand vvar EXP PRD DMD kvar export predicted sliding window demand var EXP PRD DMD kvar export predicted sliding window demand var EXP PRD DMD kvar export predicted sliding window demand var EXP PRD DMD kvar export predicted sliding window	kW IMP ACC DMD	kW import accumulated demand
WW IMP PRD DMD kW import predicted sliding window demand kvar IMP PRD DMD kvar import predicted sliding window demand kvA pRD DMD kVA predicted sliding window demand kvF PRD DMD kVA predicted sliding window demand kvF PRD DMD kVA predicted sliding window demand kvF EXP BD kW export block demand kw EXP SD kW export block demand kw EXP SD kW export block demand kw EXP SD kW export accumulated demand kw EXP ACC DMD kW export accumulated demand kw EXP PRD DMD kW export accumulated demand kwar export accumulated demand kwar export predicted sliding window demand kwar export accumulated demand kwar export accumulated demand kwar export predicted sliding window demand kwar export predicted sliding window demand kwar export predicted sliding window demand kwar export predicted sliding window demand kwar export predicted sliding window demand kwar export predicted sliding window demand kwar export predicted sliding window demand kwar export predicted sliding window demand kwar export predicted sliding window demand kwar export predicted sliding window demand kwar export predicted sliding window demand kwar exp		
xvar IMP PRD DMD kvar import predicted sliding window demand VA PRD DMD kVA predicted sliding window demand PF IMP@kVA MXDMD PF (import) at Maximum kVA sliding window demand xW EXP BD kW export block demand xwar EXP BD kW export block demand xwar EXP SD kW export sliding window demand xwar EXP SD kW export sliding window demand xwar EXP ACC DMD kW export sliding window demand xwar EXP ACC DMD kW export sliding window demand xwar EXP PRD DMD kW export predicted sliding window demand xwar EXP PRD DMD kW export predicted sliding window demand xwar EXP PRD DMD kW export predicted sliding window demand xwar EXP PRD DMD kW export predicted sliding window demand xwar export predicted sliding window demand war export predicted sliding window demand xwar EXP PRD DMD V4 Volt demand 4 DMD V4 Ampere demand n DMD n Ampere demand v/4 THD DMD V1/V12 THD demand 1 v/2 THD DMD V2/V23 THD demand 1 v/3 THD DMD V3/V31 THD demand 1 v/4 THD DMD 1 THD demand 1 THD DMD 1 THD demand		
kVA PRD DMD kVA predicted sliding window demand PF IMP@kVA MXDMD PF (import) at Maximum kVA sliding window demand kW EXP BD kW export block demand kwar export block demand wexport Sliding window demand kW EXP SD kW export sliding window demand kW EXP SD kW export sliding window demand kW EXP ACC DMD kW export sliding window demand kW EXP ACC DMD kW export predicted demand kW EXP PRD DMD kW export predicted sliding window demand kW EXP PRD DMD kW ar export predicted sliding window demand kW EXP PRD DMD kW ar export predicted sliding window demand kW EXP PRD DMD kW ar export predicted sliding window demand kW EXP PRD DMD kW ar export predicted sliding window demand kW EXP PRD DMD kW ar export predicted sliding window demand kW EXP PRD DMD kVa resport predicted sliding window demand kW EXP PRD DMD kVa resport predicted sliding window demand kW EXP PRD DMD kVa resport predicted sliding window demand kW EXP PRD DMD k4 VDN k1 DMD k1/k1/k1 k2 DMD k2/k2 k2 THD DMD k2/k2/k2 k2 THD		
PF IMP@kVA MXDMD PF (import) at Maximum kVA sliding window demand WW EXP BD kW export block demand kwar export block demand kwar export block demand kwar EXP SD kwar export block demand kwar EXP SD kwar export sliding window demand kwar EXP ACC DMD kw export accumulated demand kwar export accumulated demand kwar export predicted sliding window demand kwar EXP ACC DMD kwar export predicted sliding window demand kwar EXP PRD DMD kwar export predicted sliding window demand kwar EXP PRD DMD kvar export predicted sliding window demand kwar EXP PRD DMD kvar export predicted sliding window demand kvar EXP PRD DMD kvar export predicted sliding window demand kvar export predicted sliding window demand kvar export predicted sliding window demand kvar EXP PRD DMD kvar export predicted sliding window demand kvar export predicted sliding window demand kvar export predicted sliding window demand kvar EXP PRD DMD kvar export predicted sliding window demand kvar EXP ACC DMD kvar export predicted sliding window demand fMDD Present Harmonic Demands v1 THD DMD v1/v1/12 THD demand 1 v2 T		
WW EXP BD kW export block demand xvar EXP BD kvar export block demand wW EXP SD kW export sliding window demand xvar EXP SD kvar export sliding window demand xvar EXP SD kwar export sliding window demand xvar EXP SD kwar export sliding window demand xvar EXP ACC DMD kW export accumulated demand xvar EXP PRD DMD kW export predicted sliding window demand xvar EXP PRD DMD kvar export predicted sliding window demand xvar EXP PRD DMD kvar export predicted sliding window demand xvar EXP PRD DMD kvar export predicted sliding window demand xvar EXP PRD DMD kvar export predicted sliding window demand xvar EXP PRD DMD kvar export predicted sliding window demand xvar export predicted sliding window demand kvar export accumulated demand xvar export predicted sliding window demand kvar export accumulated demand xvar EXP PRD DMD kVar texport predicted sliding window demand xvar EXP PRD DMD kVar texport predicted sliding window demand xvar EXP PRD DMD kVar texport edmand nDMD kV1/v12 THD demand 1 xV1 THD DMD k1/tHD demand 2 THD DMD <td></td> <td></td>		
xvar EXP BD kvar export sliding window demand xvar EXP SD kW export sliding window demand xvar EXP SD kvar export sliding window demand xvar EXP ACC DMD kW export accumulated demand xvar EXP ACC DMD kW export accumulated demand xvar EXP ACC DMD kW export predicted sliding window demand xvar EXP PRD DMD kvar export predicted sliding window demand xvar EXP PRD DMD kvar export predicted sliding window demand xvar EXP PRD DMD kvar export predicted sliding window demand xvar EXP PRD DMD kvar export predicted sliding window demand xvar EXP PRD DMD kvar export predicted sliding window demand xvar EXP PRD DMD kvar export predicted sliding window demand v4 DMD V4 Volt demand 4 DMD V4 Volt demand 1 THD DMD V1/V12 THD demand 1 v2 THD DMD V2/V23 THD demand 1 v3 THD DMD V3/V31 THD demand 1 v4 THD DMD V1 THD demand 1 v4 THD DMD V1 THD demand 1 v4 THD DMD V1 THD demand 1 v4 THD DMD V2 THD demand 1 v4 THD DMD V2 THD demand 1 1 TDD DMD	kW EXP BD	
xvar EXP SD kvar export sliding window demand kW EXP ACC DMD kW export accumulated demand xvar EXP ACC DMD kw export accumulated demand kW EXP PRD DMD kW export predicted sliding window demand xvar EXP PRD DMD kW export predicted sliding window demand xvar EXP PRD DMD kW export predicted sliding window demand v4 DMD V4 Volt demand 4 DMD I4 Ampere demand n DMD In Ampere demand rRM DMD Present Harmonic Demands v1 THD DMD V1/V12 THD demand 1 v2 THD DMD V2/V23 THD demand 1 v3 THD DMD V3/V31 THD demand 1 v4 THD DMD V1 THD demand 1 v4 THD DMD V1 THD demand 1 v4 THD DMD V3/V31 THD demand 1 v4 THD DMD V1 THD demand 1 v2 THD DMD I THD demand 1 v2 THD DMD I THD demand 1 v2 THD DMD I THD demand 1 v4 THD DMD I THD demand 1 v4 THD DMD I THD demand 1 v4 THD DMD I THD demand 1 I THD DMD I THD demand 1 I THD DMD I THD demand 1 </td <td>kvar EXP BD</td> <td></td>	kvar EXP BD	
WW EXP ACC DMD kW export accumulated demand cvar EXP ACC DMD kvar export accumulated demand cvar EXP PRD DMD kW export predicted sliding window demand cvar EXP PRD DMD kvar export predicted sliding window demand v4 DMD kvar export predicted sliding window demand v4 DMD kvar export predicted sliding window demand v4 DMD kvar export predicted sliding window demand v4 DMD kvar export predicted sliding window demand v4 DMD V4 Volt demand 4 DMD IA Ampere demand n DMD In Ampere demand rRM DMD Present Harmonic Demandss v1 THD DMD V1/V12 THD demand 1 v2 THD DMD V2/V23 THD demand 1 v3 THD DMD V3/V31 THD demand 1 v4 THD DMD V4 THD demand 1 THD DMD I THD demand 2 THD DMD I THD demand 3 THD DMD I THD demand 1 TDD DMD I TDD demand 2 TDD DMD I TDD demand 3 TDD DMD I TDD demand 4 TDD DMD I TDD demand 5 UM REG1 ACC DMD Summary register #1 demand <	kW EXP SD	
kvar EXP ACC DMD kvar export accumulated demand kW EXP PRD DMD kW export predicted sliding window demand kvar EXP PRD DMD kvar export predicted sliding window demand var EXP PRD DMD kvar export predicted sliding window demand var EXP PRD DMD kvar export predicted sliding window demand var EXP PRD DMD V4 Volt demand 4 DMD V4 Volt demand n DMD In Ampere demand n DMD In Ampere demand rRM DMD Present Harmonic Demands /1 THD DMD V1/V12 THD demand 1 /2 THD DMD V2/V23 THD demand 1 /3 THD DMD V3/V31 THD demand 1 /4 THD DMD V1 THD demand 1 /4 THD DMD I THD demand 1 /4 THD DMD I THD demand 1 /4 THD DMD I THD demand 1 /4 THD DMD I THD demand 1 1 THD DMD I THD demand 1 1 THD DMD I THD demand 1 2 THD DMD I THD demand 1 1 TDD DMD I TDD demand 1 1 TDD DMD I TDD demand 1 1 TDD DMD I TDD demand 1 2 TDD DMD I TDD demand 1	kvar EXP SD	
WW EXP PRD DMD kW export predicted sliding window demand kvar EXP PRD DMD kvar export predicted sliding window demand V4 DMD V4 Volt demand 4 DMD V4 Volt demand 4 DMD V4 Volt demand n DMD In Ampere demand n DMD Present Harmonic Demands V1 THD DMD V1/V12 THD demand 1 V2 THD DMD V2/V23 THD demand 1 V3 THD DMD V3/V31 THD demand 1 V4 THD DMD V3/V31 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V3/V31 THD demand 1 V4 THD DMD V1/V12 THD demand 1 V4 THD DMD V3/V31 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD 1 THD demand 1 V4 THD DMD 1 THD demand 2 3 THD DMD 1 TDD demand 2 1 TDD DMD 1 TDD demand 3 2 TDD DMD 1 TDD demand 3 3 TDD DMD 1 TDD demand 3 3 TDD DMD 1 TDD demand 3 2 TDD DMD 1 TDD demand 3 3 TDD DMD 1 TDD demand 3 SUMM ACC DMD Summary register #1 demand 4		
vvar EXP PRD DMD kvar export predicted sliding window demand V4 DMD V4 Volt demand 4 DMD 14 Ampere demand n DMD In Ampere demand HRM DMD Present Harmonic Demands V1 THD DMD V1/V12 THD demand 1 V2 THD DMD V2/V23 THD demand 1 V3 THD DMD V3/V31 THD demand 1 V4 THD DMD V3/V31 THD demand 1 V4 THD DMD V3/V31 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V3/V31 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V3/V31 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 V4 TDD DMD V3 TD demand 1 1 TDD DMD V1 TDD demand 1 2 TDD DMD V3 TDD demand 1 3 TDD DMD V3 TDD demand 1 4 TDD DMD V4 TDD demand 1 SUMM ACC DMD Summary register #1 demand 1 SUM REG1 ACC DMD Summary register #		
V4 DMD V4 Volt demand 4 DMD 14 Ampere demand n DMD In Ampere demand HRM DMD Present Harmonic Demands V1 THD DMD V1/V12 THD demand 1 V2 THD DMD V2/V23 THD demand 1 V3 THD DMD V3/V31 THD demand 1 V4 THD DMD V3/V31 THD demand 1 V4 THD DMD V3/V31 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 2 THD DMD V3 TDD demand 1 1 TDD DMD V4 THD demand 1 2 TDD DMD V4 TDD demand 1 3 TDD DMD V3 TDD demand 1 3 TDD DMD V4 TDD demand 1 SUMM ACC DMD Summary register #1 demand 1 SUM REG1 ACC DMD Summary register #2 demand 1 <		
4 DMD 14 Ampere demand n DMD In Ampere demand HRM DMD Present Harmonic Demands V1 THD DMD V1/V12 THD demand 1 V2 THD DMD V2/V23 THD demand 1 V3 THD DMD V3/V31 THD demand 1 V4 THD DMD V4/V1/12 THD demand 1 V4 THD DMD V3/V31 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 Y4 THD DMD V4 THD demand 1 Y4 THD DMD V4 THD demand 1 Y4 THD DMD 1 THD demand 1 Y4 THD DMD 1 THD demand 1 Y4 THD DMD 1 TDD demand 1 Y4 THD DMD 1 TDD demand 1 Y1 TDD DMD 1 TDD demand 1 Y1 TDD DMD 1 TDD demand 1 Y1 TDD DMD 1 TDD demand 1 Y1 TDD DMD 1 TDD demand 1 Y1 TDD DMD 1 TDD demand 1 Y1 TDD DMD 1 TDD demand 1 Y1 TDD DMD 1 TDD demand 1 Y1 TDD DMD 1 TD		
n DMD In Ampere demand HRM DMD Present Harmonic Demands V1 THD DMD V1/V12 THD demand 1 V2 THD DMD V2/V23 THD demand 1 V3 THD DMD V3/V31 THD demand 1 V4 THD DMD V4/V4 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 Y4 THD DMD V4 THD demand 1 Y4 THD DMD V4 THD demand 1 Y4 THD DMD V4 THD demand 1 Y4 THD DMD V4 THD demand 1 Y4 THD DMD 1 THD demand 1 Y4 THD DMD 1 THD demand 1 Y4 THD DMD 1 TDD demand 1 Y4 THD DMD 1 TDD demand 1 Y4 THD DMD 1 TDD demand 1 Y4 TDD DMD 1 TDD demand 1 Y4 TDD DMD 1 TDD demand 1 Y4 TDD DMD 1 TDD demand 1 Y4 TDD DMD 1 TDD demand 1 Y4 TDD DMD 1 TDD demand 1 Y4 TDD DMD 1 TDD demand 1 Y4 TDD DMD 1 TDD demand 1 Y4 TDD DMD 1 TDD demand 1 Y4 TDD DMD 1 TDD dem	I4 DMD	
HRM DMDPresent Harmonic DemandsV1 THD DMDV1/V12 THD demand 1V2 THD DMDV2/V23 THD demand 1V3 THD DMDV3/V31 THD demand 1V4 THD DMDV4 THD demand 1V4 THD DMDV4 THD demand 1V4 THD DMD1 THD demand 12 THD DMD2 THD demand 23 THD DMD3 THD demand 44 THD DMD4 THD demand 21 TDD DMD1 TDD demand 41 TDD DMD1 TDD demand 42 TDD DMD1 TDD demand 42 TDD DMD1 TDD demand 43 TDD DMD1 TDD demand 42 TDD DMD1 TDD demand 43 TDD DMD1 TDD demand 43 TDD DMD1 SUDD demand 43 TDD DMD1 SUDD demand 43 TDD DMD1 SUDD demand 43 TDD DMD1 SUM REG1 ACC DMD Summary register #1 demand 5SUM REG2 ACC DMDSummary register #2 demand 4SUM REG16 ACC DMDSummary register #16 demand 4	In DMD	
V2 THD DMD V2/V23 THD demand 1 V3 THD DMD V3/V31 THD demand 1 V4 THD DMD V4 THD demand 1 V4 THD DMD V4 THD demand 1 1 THD DMD V4 THD demand 1 2 THD DMD 1 THD demand 1 2 THD DMD 1 THD demand 1 3 THD DMD 1 THD demand 1 3 THD DMD 1 THD demand 1 4 THD DMD 1 TDD demand 1 1 TDD DMD 1 TDD demand 1 2 TDD DMD 1 TDD demand 1 3 TDD DMD 1 TDD demand 1 3 TDD DMD 1 TDD demand 1 3 TDD DMD 1 TDD demand 1 3 TDD DMD 1 TDD demand 1 3 TDD DMD 1 TDD demand 1 3 TDD DMD 1 TDD demand 1 3 TDD DMD 1 TDD demand 1 SUMM ACC DMD Summary (TOU Total) Accumulated Demands 1 SUM REG1 ACC DMD Summary register #1 demand 1 SUM REG16 ACC DMD Summary register #16 demand 1	HRM DMD	
V3 THD DMD V3/V31 THD demand 1 V4 THD DMD V4 THD demand 1 1 THD DMD 11 THD demand 1 2 THD DMD 12 THD demand 1 3 THD DMD 12 THD demand 1 3 THD DMD 13 THD demand 1 4 THD DMD 14 THD demand 1 1 TDD DMD 14 THD demand 1 1 TDD DMD 14 TDD demand 1 2 TDD DMD 12 TDD demand 1 2 TDD DMD 12 TDD demand 1 3 TDD DMD 13 TDD demand 1 3 TDD DMD 13 TDD demand 1 3 TDD DMD 14 TDD demand 1 4 TDD DMD 14 TDD demand 1 SUMM ACC DMD Summary (TOU Total) Accumulated Demands 1 SUM REG1 ACC DMD Summary register #1 demand 1 SUM REG2 ACC DMD Summary register #2 demand 1 SUM REG16 ACC DMD Summary register #16 demand 1	V1 THD DMD	V1/V12 THD demand ¹
V3 THD DMD V3/V31 THD demand 1 V4 THD DMD V4 THD demand 1 THD DMD 1 THD demand 2 THD DMD 1 THD demand 3 THD DMD 1 THD demand 3 THD DMD 1 THD demand 1 TD DMD 1 THD demand 1 TDD DMD 1 TDD demand 1 TDD DMD 1 TDD demand 2 TDD DMD 1 TDD demand 2 TDD DMD 1 TDD demand 3 TDD DMD 1 TDD demand 3 TDD DMD 13 TDD demand 4 TDD DMD 14 TDD demand SUMM ACC DMD Summary (TOU Total) Accumulated Demands SUM REG1 ACC DMD Summary register #1 demand SUM REG2 ACC DMD Summary register #2 demand SUM REG16 ACC DMD Summary register #16 demand	V2 THD DMD	V2/V23 THD demand ¹
V4 THD DMD V4 THD demand 1 THD DMD 1 THD demand 2 THD DMD 12 THD demand 3 THD DMD 13 THD demand 4 THD DMD 14 THD demand 1 TDD DMD 14 THD demand 2 TDD DMD 14 TDD demand 2 TDD DMD 11 TDD demand 2 TDD DMD 12 TDD demand 3 TDD DMD 13 TDD demand 4 TDD DMD 14 TDD demand 5 UMM ACC DMD Summary (TOU Total) Accumulated Demands SUM REG1 ACC DMD Summary register #1 demand SUM REG1 ACC DMD Summary register #2 demand SUM REG16 ACC DMD Summary register #16 demand	V3 THD DMD	
2 THD DMD 12 THD demand 3 THD DMD 13 THD demand 4 THD DMD 14 THD demand 1 TDD DMD 11 TDD demand 2 TDD DMD 12 TDD demand 3 TDD DMD 13 TDD demand 4 TDD DMD 14 TDD demand 3 TDD DMD 13 TDD demand 4 TDD DMD 14 TDD demand 5UMM ACC DMD Summary (TOU Total) Accumulated Demands SUM REG1 ACC DMD Summary register #1 demand SUM REG2 ACC DMD Summary register #2 demand SUM REG16 ACC DMD Summary register #16 demand	V4 THD DMD	
3 THD DMD 13 THD demand 4 THD DMD 14 THD demand 1 TDD DMD 11 TDD demand 2 TDD DMD 12 TDD demand 3 TDD DMD 13 TDD demand 4 TDD DMD 13 TDD demand 5 TDD DMD 14 TDD demand 5 TDD DMD 14 TDD demand 5 SUMM ACC DMD Summary (TOU Total) Accumulated Demands SUM REG1 ACC DMD Summary register #1 demand SUM REG2 ACC DMD Summary register #2 demand SUM REG16 ACC DMD Summary register #16 demand	11 THD DMD	
4 THD DMD 14 THD demand 1 TDD DMD 11 TDD demand 2 TDD DMD 12 TDD demand 3 TDD DMD 13 TDD demand 4 TDD DMD 14 TDD demand 5UMM ACC DMD 14 TDD demand SUMM ACC DMD Summary (TOU Total) Accumulated Demands SUM REG1 ACC DMD Summary register #1 demand SUM REG2 ACC DMD Summary register #2 demand SUM REG16 ACC DMD Summary register #16 demand	12 THD DMD	
1 TDD DMD 1 TDD demand 2 TDD DMD 12 TDD demand 3 TDD DMD 13 TDD demand 4 TDD DMD 14 TDD demand SUMM ACC DMD Summary (TOU Total) Accumulated Demands SUM REG1 ACC DMD Summary register #1 demand SUM REG2 ACC DMD Summary register #2 demand SUM REG16 ACC DMD Summary register #16 demand	-	
2 TDD DMD 12 TDD demand 3 TDD DMD 13 TDD demand 4 TDD DMD 14 TDD demand SUMM ACC DMD Summary (TOU Total) Accumulated Demands SUM REG1 ACC DMD Summary register #1 demand SUM REG2 ACC DMD Summary register #2 demand SUM REG16 ACC DMD Summary register #16 demand		
3 TDD DMD I3 TDD demand 4 TDD DMD I4 TDD demand SUMM ACC DMD Summary (TOU Total) Accumulated Demands SUM REG1 ACC DMD Summary register #1 demand SUM REG2 ACC DMD Summary register #2 demand SUM REG16 ACC DMD Summary register #16 demand		
4 TDD DMD 14 TDD demand SUMM ACC DMD Summary (TOU Total) Accumulated Demands SUM REG1 ACC DMD Summary register #1 demand SUM REG2 ACC DMD Summary register #2 demand SUM REG16 ACC DMD Summary register #16 demand		
SUMM ACC DMD Summary (TOU Total) Accumulated Demands SUM REG1 ACC DMD Summary register #1 demand SUM REG2 ACC DMD Summary register #2 demand SUM REG16 ACC DMD Summary register #16 demand	4 TDD DMD	
SUM REG2 ACC DMD Summary register #2 demand SUM REG16 ACC DMD Summary register #16 demand	SUMM ACC DMD	
	SUM REG1 ACC DMD	Summary register #1 demand
, ,	SUM REG2 ACC DMD	Summary register #2 demand
, ,		
	DOMINI REK DINID	pummary (TOU Total) Block Demands

SUM REG1 BLK DMD Summary register #1 demand SUM REG2 BLK DMD Summary (TOU Total) Sliding Demands SUM REG1 6 BLK DMD Summary (TOU Total) Sliding Demands SUM REG1 SW DMD Summary (TOU Total) Sliding Demands SUM REG3 SW DMD Summary register #1 demand 		
SUM REG2 BLK DMD Summary register #2 demand SUM REG2 BLK DMD Summary register #16 demand SUM REG1 SW DMD Summary register #1 demand SUM REG1 SW DMD Summary register #2 demand SUM REG1 SW DMD Summary register #2 demand SUM REG1 SW DMD Summary register #2 demand SUM REG1 SW DMD Summary register #2 demand SUM REG1 SW DMD Summary register #2 demand SUM REG1 SW DMD Summary register #2 demand SUM REG1 SW DMD REGY Total Energy Wh IMPORT Wh import Wh NET Wh Net Wh NTTAL KWh net WM NTTAL KWh net WM NTTAL KWh total VAN TOTAL KWA total VAN TOTAL KWA total VAN TOTAL KWA total VAN TOTAL KWA total VM TOTAL KWA total VM TOTAL KWA total VM TOTAL KWA total VM TOTAL KWA total VM TOTAL KWA total VM TOTAL KWA total	Designation	Description
Win REG16 BLK DND Summary register #16 demand SUM REG16 SW DND Summary register #1 demand SUM REG16 SW DND Summary register #16 demand SUM REG16 SW DND Summary register #16 demand Lin		
SUMM SW DMD Summary (rCU Total) Silding Demands SUM REG SW DMD Summary register #1 demand SUM REG SW DMD Summary register #1 demand SUM REG SW DMD Summary register #16 demand SUM REG SW DMD Summary register #16 demand NERGY Total Energy Wh MPOT Wh import Wh NET Wh net Wh NET Wh net Wh NET KWh net Wh NET kvah report Wah NET kvah net Suah REG Summary register #10 Suah REG Vah TOTAL kvah net Sum REG Summary energy register #1 SUM REG Summary energy register #1 SUM REG Summary energy register #16 SHD V1 V1/12 Harmonic distortion V1 WHDO2 WO2 Harmonic distortion V2 W2/22/23 Harmonic Distortions 1 V2 W2/22/23 Harmonic Distortions V3 WHDO2 <t< td=""><td>SUM REG2 BLK DMD</td><td>Summary register #2 demand</td></t<>	SUM REG2 BLK DMD	Summary register #2 demand
SUMM SW DMD Summary (rCU Total) Silding Demands SUM REG SW DMD Summary register #1 demand SUM REG SW DMD Summary register #1 demand SUM REG SW DMD Summary register #16 demand SUM REG SW DMD Summary register #16 demand NERGY Total Energy Wh MPOT Wh import Wh NET Wh net Wh NET Wh net Wh NET KWh net Wh NET kvah report Wah NET kvah net Suah REG Summary register #10 Suah REG Vah TOTAL kvah net Sum REG Summary energy register #1 SUM REG Summary energy register #1 SUM REG Summary energy register #16 SHD V1 V1/12 Harmonic distortion V1 WHDO2 WO2 Harmonic distortion V2 W2/22/23 Harmonic Distortions 1 V2 W2/22/23 Harmonic Distortions V3 WHDO2 <t< td=""><td></td><td></td></t<>		
SUM REG1 SW DMD Summary register #1 demand SUM REG2 SW DMD Summary register #2 demand SUM REG16 SW DMD Summary register #2 demand SUM REG16 SW DMD Summary register #16 demand SUM REG16 SW DMD Summary register #2 demand Wh IMPORT KWh import Wh NEPC KWh net WM NTTAL KWh total svafh SPORT kvarh export svafh NPORT kvarh intport svafh NPORT kvarh intport svafh NPORT kvarh intport svafh NPORT kvarh intport svafh NET kvarh net svafh NTAL kVAh total //W ATOTAL kVAh		
SUM REG2 SW DMD Summary register #2 demand SUM REG16 SW DMD Summary register #16 demand NERGY Total Energy Wh IMPORT KWh import WM NET KWh export WM NET KWh net WM NET KWh net WM NET KWh total varah IMPORT Kvarh import varah NEYORT Kvarh seport varah NEYORT Kvarh seport varah NEYORT Kvarh seport varah NEY Kvarh seport VA HOTAL V1/1/1		
Jum REG16 SW DMD Summary register #16 demand NERGY Total Energy Wh IMPORT Wh import Wh NET Wh export Wh TOTAL KWh total wwh TOTAL KWh total wwh TOTAL KWh total warb EXPORT Kvarh export warh IMPORT Kvarh export warh NET Kvarh export warh NET Kvarh export warh NET Kvarh total vwarh TOTAL KVArh	SUM REG1 SW DMD	
ENERGY Total Energy Wh IMPORT Wh import Wh NET Wh export Wh NET Wh total wwh TOTAL Wh total wah IMPORT kwh total wah SZPORT kvarh export warh EVPORT kvarh export warh ToTAL kvarh total warh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varhDOT total tarmonic distortion	SUM REG2 SW DMD	Summary register #2 demand
ENERGY Total Energy Wh IMPORT Wh import Wh NET Wh export Wh NET Wh total wwh TOTAL Wh total wah IMPORT kwh total wah SZPORT kvarh export warh EVPORT kvarh export warh ToTAL kvarh total warh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varh TOTAL kvarh total varhDOT total tarmonic distortion		
Wh IMPORT Wh import Wh EXPORT Wh import Wh NET Wh net Wh NET Wah Import svaft NEPORT Kvarh import svaft NEPORT Kvarh import svaft NET Kvarh import svaft NET Kvarh net svaft NEG1 Summary energy register #1 SUM REG2 Summary energy register #16 SvHDV1 V1/1/12 Harmonic Distortions 1 /1 %HD03 H63 Harmonic distortion /1 %HD04 H01 Harmonic distortion /2 %HD03 H03 Harmonic Distortions 1 /2 %HD04 H02 Harmonic distortion <td>SUM REG16 SW DMD</td> <td>Summary register #16 demand</td>	SUM REG16 SW DMD	Summary register #16 demand
Wh EXPORT Wh export Wh NET Wh net Wh NET Wh net Wh TOTAL Wh total wah IMPORT kvah inport wah EXPORT kvah export wah EXPORT kvah net wah TOTAL Kvah net wah TOTAL Kvah total //h Volt-hours MMARY REGS Summary energy register #1 SUM REG1 Summary energy register #1 SUM REG16 Summary energy register #16 WHO V1 V1/V12 Harmonic Distortions 1 V1 %HD01 H01 Harmonic distortion V1 %HD02 H02 Harmonic distortion V1 %HD03 H63 Harmonic distortion V2 %HD04 H01 Harmonic distortion V3 %HD02 H02 Harmonic distortion V3 %HD03 H03 Harmonic distortion V2 %HD04 H01 Harmonic distortion V3 %HD05 H02 Harmonic distortion V3 %HD04 H01 Harmonic distortion V3 %HD04 H01 Harmonic distortion V3 %HD05 H02 Harmonic distortion <td< td=""><td>ENERGY</td><td>Total Energy</td></td<>	ENERGY	Total Energy
Wh NET W/h net W/h TOTAL W/h total warh IMPORT kvarh import warh NET kvarh net warh NEG1 swarh net origiter #10 SUM REG16 Summary energy register #16 %HD V1 V1/V12 Harmonic distortion 11 %HD03 H63 Harmonic distortion 12 %HD01 H01 Harmonic distortion 12 %HD02 H02 Harmonic distortion <tr< td=""><td>kWh IMPORT</td><td>kWh import</td></tr<>	kWh IMPORT	kWh import
Wh TOTAL W/h total varh IMPORT kvarh import varh EXPORT kvarh import varh EXPORT kvarh inter varh TOTAL kvarh net varh TOTAL kvarh total v/h Volt-hours Ah Ampere-hours SUMMARY REGS Summary energy register #1 SUM REG1 Summary energy register #1 SUM REG1 Summary energy register #1 SUM REG16 Summary energy register #16 %HD V1 VI/V12 Harmonic distortion 1 1/1 %HD01 H01 Harmonic distortion 1 1/1 %HD03 H63 Harmonic distortion 1 1/1 %HD04 H01 Harmonic distortion 1 2/2 %HD01 H01 Harmonic distortion 1 2/2 %HD02 H02 Harmonic distortion 1 2/2 %HD03 H03 Harmonic distortion 1 2/2 %HD04 H01 Harmonic distortion 1 2/2 %HD03 H03 Harmonic distortion 1 2/2 %HD04 H01 Harmonic distortion 1 2/2 %HD04 H01 Harmonic distortion 1 2/2 %HD05 H63 Harmonic distortion 1 3	kWh EXPORT	kWh export
svarh IMPORT kvarh import svarh NET kvarh export svarh NET kvarh net svarh Net svarh net svarh Net svarh net svarh Net svarh net svarh Net svarh net svarh Net svarh net svarh Net svarh net	kWh NET	kWh net
varh EXPORT kvarh net varh TOTAL kvarh net varh TOTAL kvarh total varh Total surmary energy register #1 SUM REG1 Summary energy register #1 SUM REG16 Summary energy register #16 %HD01 H01 Harmonic distortion varh D02 H02 Harmonic Distortions 1 VarhD03 Y4/Y12 Harmonic distortion </td <td>kWh TOTAL</td> <td>kWh total</td>	kWh TOTAL	kWh total
varh TOTAL kvarh tet varh TOTAL kvarh tetal vVAh TOTAL kVAh tetal VAh Volt-hours Ah Ampere-hours SUMMREG Summary energy register #1 SUM REG2 Summary energy register #2 SUM REG3 Summary energy register #16 SUM REG16 Summary energy register #16 SUM REG16 Summary energy register #16 WH D1 V1/V1/2 Harmonic Distortions 1 V1 WHD01 V1 %HD03 H63 Harmonic distortion V1 %HD03 H63 Harmonic distortion V2 V2/V23 Harmonic Distortion 1 V2 %HD03 H63 Harmonic distortion <t< td=""><td>kvarh IMPORT</td><td>kvarh import</td></t<>	kvarh IMPORT	kvarh import
varh TOTAL kvarh tet varh TOTAL kvarh tetal vVAh TOTAL kVAh tetal VAh Volt-hours Ah Ampere-hours SUMMREG Summary energy register #1 SUM REG2 Summary energy register #2 SUM REG3 Summary energy register #16 SUM REG16 Summary energy register #16 SUM REG16 Summary energy register #16 WH D1 V1/V1/2 Harmonic Distortions 1 V1 WHD01 V1 %HD03 H63 Harmonic distortion V1 %HD03 H63 Harmonic distortion V2 V2/V23 Harmonic Distortion 1 V2 %HD03 H63 Harmonic distortion <t< td=""><td>kvarh EXPORT</td><td>kvarh export</td></t<>	kvarh EXPORT	kvarh export
VAh TOTAL VVAh total Vn Volt-hours Ah Ampere-hours SUMMARY REGS Summary (TOU Total) Energy Registers SUM REG1 Summary energy register #1 SUM REG1 Summary energy register #1 SUM REG16 Summary energy register #16 SUM REG16 Summary energy register #16 WHD V1 V1/V12 Harmonic Distortions 1 V1 %HDD1 H01 Harmonic distortion V1 %HD63 H63 Harmonic distortion V2 %V2/V3 Harmonic Distortions 1 V2 V2 %HD01 H01 Harmonic distortion V2 %HD03 H03 Harmonic Distortion 1 V2 %HD04 H01 Harmonic distortion V3 %HD01 H01 Harmonic distortion V3 %HD02 H02 Harmonic distortion V3 %HD03 H03 Harmonic distortion V3 %HD04 H04 Harmonic distortion V3 %HD05 H63 Harmonic distortion V3 %HD04 H04 Harmonic distortion V4 %HD05 H063 H63 Harmonic distortion V4 %HD063 H63 Harmonic distortion V4 %HD063 H063 Harmonic dist	kvarh NET	
VAh TOTAL VVAh total Vh Volt-hours Vh Ampere-hours SUMMRY REGS Summary (TOU Total) Energy Registers SUM REG1 Summary energy register #1 SUM REG1 Summary energy register #1 SUM REG16 Summary energy register #16 SUM REG16 Summary energy register #16 WHD V1 V1/V12 Harmonic Distortion V1 %HD01 H01 Harmonic distortion V1 %HD02 H02 Harmonic distortion V1 %HD03 H63 Harmonic distortion V2 %H063 H63 Harmonic distortion V2 %H063 H04 Harmonic distortion V2 %H063 H63 Harmonic distortion V2 %H063 H63 Harmonic distortion V3 %H001 H01 Harmonic distortion V3 %H02 H02 Harmonic distortion V3 %H03 H63 Harmonic distortion V3 %H04 H04 Harmonic distortion V3 %H02 H02 Harmonic distortion V4 %H04 H04 Harmonic distortion V4 %H02 H02 Harmonic distortion V4 %H053 H63 Harmonic distortion	kvarh TOTAL	kvarh total
/h Volt-hours An Ampere-hours SUMMARY REGS Summary (TOU Total) Energy Registers SUM REG1 Summary energy register #1 SUM REG2 Summary energy register #16 SWHDV1 V1/12 Harmonic Distortions 1 /1 %HD01 H01 Harmonic Distortions 1 /1 %HD02 H02 Harmonic Distortions 1 /1 %HD03 H63 Harmonic distortion // %HD63 H64 Harmonic Distortion 1 // %HD04 H01 Harmonic distortion // %HD03 H63 Harmonic Distortion 1 /2 %HD04 H01 Harmonic distortion // %HD05 H63 Harmonic distortion // %HD04 H01 Harmonic distortion // %HD04 H01 Harmonic distortion // %HD04 H01 Harmonic distortion // %HD03 H63 Harmonic distortion // %HD04 H01 Harmonic distortion // %HD05 H03 Harmonic distortion // %HD04 H01 Harmonic distortion // %HD05 H63 Harmonic distortion // %HD04 H01 Harmonic distortion // %HD05 H02 Harmonic disto	kVAh TOTAL	
Ah Ampere-hours SUMMARY REGS Summary (TOU Total) Energy Registers SUM REG1 Summary energy register #1 SUM REG2 Summary energy register #1 SUM REG16 Summary energy register #16 %HD V1 V1/V12 Harmonic Distortions 1 //1 %HD01 H01 Harmonic distortion //1 %HD02 H02 Harmonic distortion //1 %HD03 H63 Harmonic distortion //1 %HD04 H01 Harmonic distortion //1 %HD05 H63 Harmonic distortion //2 %HD01 H01 Harmonic distortion //2 %HD03 H63 Harmonic distortion //2 %HD04 H02 Harmonic distortion //2 %HD03 H63 Harmonic distortion //2 %HD04 H02 Harmonic distortion //3 %HD02 H02 Harmonic distortion //3 %HD04 H01 Harmonic distortion //3 %HD04 H01 Harmonic distortion //4 %HD03 H63 Harmonic distortion //4 %HD01 H01 Harmonic distortion //4 %HD02 H02 Harmonic distortion //4 %HD03 H63 Harmonic distortion //4 %HD04 <td>Vh</td> <td></td>	Vh	
SUMMARY REGS Summary (TOU Total) Energy Registers SUM REG1 Summary energy register #1 SUM REG2 Summary energy register #2 SUM REG16 Summary energy register #16 SUM REG16 Summary energy register #16 %HD V1 V1/V12 Harmonic Distortions 1 /1 %HD01 H01 Harmonic distortion /1 %HD02 H02 Harmonic distortion /1 %HD63 H63 Harmonic distortion /2 %HD01 H01 Harmonic distortion /2 %HD02 H02 Harmonic distortion /2 %HD03 H63 Harmonic distortion /2 %HD04 H01 Harmonic distortion /2 %HD03 H63 Harmonic distortion /3 %HD04 H01 Harmonic distortion /3 %HD05 H63 Harmonic distortion /3 %HD04 H01 Harmonic distortion /4 %HD03 H63 Harmonic distortion /4 %HD04 H01 Harmonic distortion /4 %HD04 H01 Harmonic distortion /4 %HD04 H01 Harmonic distortion /4 %HD05 H63 Harmonic distortion /4 %HD04 H01 Har	Ah	
SUM REG1 Summary energy register #1 SUM REG2 Summary energy register #2 SUM REG16 Summary energy register #16 %HD V1 V1/V12 Harmonic distortion /1 %HD01 H01 Harmonic distortion /1 %HD02 H02 Harmonic distortion /1 %HD03 H63 Harmonic distortion /1 %HD04 H01 Harmonic distortion /2 %HD05 H02 Harmonic distortion /2 %HD04 H01 Harmonic distortion /2 %HD05 H63 Harmonic distortion /2 %HD063 H63 Harmonic distortion /2 %HD04 H01 Harmonic distortion /3 %HD04 H01 Harmonic distortion /3 %HD05 H63 Harmonic distortion /3 %HD06 H63 Harmonic distortion /3 %HD07 H02 Harmonic distortion /3 %HD08 H63 Harmonic distortion /4 %HD01 H01 Harmonic distortion /4 %HD02 H02 Harmonic distortion /4 %HD03 H63 Harmonic distortion /4 %HD04 H01 Harmonic distortion /4 %HD05 H63 Harmonic distortion		
SUM REG2 Summary energy register #2 SUM REG16 Summary energy register #16 %HD V1 V1/V12 Harmonic Distortions 1 /1 %HD01 H01 Harmonic distortion /1 %HD02 H02 Harmonic distortion /1 %HD02 H02 Harmonic distortion /1 %HD03 H63 Harmonic distortion /2 %HD01 H01 Harmonic distortion /2 %HD03 H63 Harmonic distortion /2 %HD63 H63 Harmonic distortion /2 %HD03 V3/V31 Harmonic distortion /3 %HD03 H03 Harmonic distortion /3 %HD04 H01 Harmonic distortion /3 %HD03 H63 Harmonic distortion /4 %HD04 H01 Harmonic distortion /4 %HD05 H63 Harmonic distortion /4 %HD04 H01 Harmonic distortion /4 %HD05 H63 Harmonic distortion /4 %HD01 H01 Harmonic distortion /4 %HD01 H01 Harmonic distortion /4 %HD03 H63 Harmonic distortion /4 %HD04		
SUM REG16 Summary energy register #16 SWHD V1 V1/V12 Harmonic Distortions 1 /1 %HD01 H01 Harmonic distortion /1 %HD02 H02 Harmonic distortion /1 %HD03 H63 Harmonic distortion // %HD04 H01 Harmonic distortion // %HD03 H63 Harmonic distortion // %HD04 H01 Harmonic distortion // %HD05 H02 Harmonic distortion // %HD04 H01 Harmonic distortion // %HD05 H03 Harmonic distortion // %HD04 H01 Harmonic distortion // % WD05 H03 Harmonic distortion // % WD04 H04 Harmonic distortion // % WD02 H02 Harmonic distortion // % WD04 H04 Harmonic distortion // % WD05 H63 Harmonic distortion // % WD04 H04 Harmonic distortion // % WD04 H04 Harmonic distortion // % WD02 H02 Harmonic distortion // % WD04 H01 Harmonic distortion // % WD04 H01 Harmonic distortion // % WD01 H01 Harmonic distortion		
%HD V1 V1/V12 Harmonic Distortions 1 V1 %HD01 H01 Harmonic distortion V1 %HD02 H02 Harmonic distortion V1 %HD03 H63 Harmonic distortion V1 %HD63 H63 Harmonic Distortions 1 V2 V2/V23 Harmonic Distortions 1 V2 V2 %HD01 H01 Harmonic distortion V2 %HD02 H02 Harmonic Distortions 1 V2 %HD03 H63 Harmonic Distortion 1 V2 %HD04 H01 Harmonic Distortion 1 V2 %HD05 H02 Harmonic Distortion 1 V3 %HD01 H01 Harmonic Distortions 1 V3 %HD02 H02 Harmonic distortion V3 %HD03 H63 Harmonic distortion V3 %HD04 H01 Harmonic distortion V3 %HD03 H63 Harmonic Distortions V4 %HD04 V4 Harmonic Distortion V3 %HD03 H63 Harmonic distortion V4 %HD04 H01 Harmonic distortion V4 %HD04 H01 Harmonic distortion V4 %HD03 H03 Harmonic Distortions V4 %HD04 H01 Harmonic distortion V4 %HD04 H01 Harmonic distortion V4 %HD05	0000002	
%HD V1 V1/V12 Harmonic Distortions 1 V1 %HD01 H01 Harmonic distortion V1 %HD02 H02 Harmonic distortion V1 %HD03 H63 Harmonic distortion V1 %HD63 H63 Harmonic Distortions 1 V2 V2/V23 Harmonic Distortions 1 V2 V2 %HD01 H01 Harmonic distortion V2 %HD02 H02 Harmonic Distortions 1 V2 %HD03 H63 Harmonic Distortion 1 V2 %HD04 H01 Harmonic Distortion 1 V2 %HD05 H02 Harmonic Distortion 1 V3 %HD01 H01 Harmonic Distortions 1 V3 %HD02 H02 Harmonic distortion V3 %HD03 H63 Harmonic distortion V3 %HD04 H01 Harmonic distortion V3 %HD03 H63 Harmonic Distortions V4 %HD04 V4 Harmonic Distortion V3 %HD03 H63 Harmonic distortion V4 %HD04 H01 Harmonic distortion V4 %HD04 H01 Harmonic distortion V4 %HD03 H03 Harmonic Distortions V4 %HD04 H01 Harmonic distortion V4 %HD04 H01 Harmonic distortion V4 %HD05		 Summary operativ register #16
V1 %HD01 H01 Harmonic distortion V1 %HD02 H02 Harmonic distortion V1 %HD63 H63 Harmonic distortion %HD V2 V2/V23 Harmonic Distortions 1 V2 %HD01 H01 Harmonic distortion V2 %HD02 H02 Harmonic distortion V2 %HD03 H63 Harmonic distortion V2 %HD63 H63 Harmonic distortion V2 %HD04 H01 Harmonic distortion V3 %HD04 H03 Harmonic distortion V3 %HD04 H04 Harmonic distortion V3 %HD04 H01 Harmonic distortion V3 %HD04 H02 Harmonic distortion V3 %HD05 H02 Harmonic distortion V3 %HD04 H01 Harmonic distortion V4 %HD01 H01 Harmonic distortion V4 %HD02 H02 Harmonic distortion V4 %HD03 H63 Harmonic distortion V4 %HD04 H01 Harmonic distortion V4 %HD02 H02 Harmonic distortion V4 %HD03 H63 Harmonic distortion V4 %HD04 H01 Harmonic distortion V4 %HD05 H02 Harmonic distortion V604 H04 Harmonic distor		
/1 %HD02 H02 Harmonic distortion /1 %HD03 H63 Harmonic distortion %HD V2 V2/V23 Harmonic distortion 1 /2 %HD01 H01 Harmonic distortion /2 %HD02 H02 Harmonic distortion /2 %HD03 H63 Harmonic distortion /2 %HD03 H63 Harmonic distortion /2 %HD63 H63 Harmonic distortion %HD V3 V3/V31 Harmonic distortion /3 %HD01 H01 Harmonic distortion		
%HD V2 V2/V23 Harmonic Distortions 1 V2 %HD01 H01 Harmonic distortion V2 %HD02 H02 Harmonic distortion V2 %HD63 H63 Harmonic distortion %HD V3 V3/V31 Harmonic Distortions 1 V3 %HD01 H01 Harmonic distortion V3 %HD02 H02 Harmonic distortion V3 %HD03 H63 Harmonic distortion V3 %HD63 H63 Harmonic distortion V3 %HD02 H02 Harmonic distortion V3 %HD03 H63 Harmonic distortion		
%HD V2 V2/V23 Harmonic Distortions 1 V2 %HD01 H01 Harmonic distortion V2 %HD02 H02 Harmonic distortion V2 %HD63 H63 Harmonic distortion %HD V3 V3/V31 Harmonic Distortions 1 V3 %HD01 H01 Harmonic distortion V3 %HD02 H02 Harmonic distortion V3 %HD03 H63 Harmonic distortion V3 %HD63 H63 Harmonic distortion V3 %HD02 H02 Harmonic distortion V3 %HD03 H63 Harmonic distortion		···
V2 %HD01 H01 Harmonic distortion V2 %HD02 H02 Harmonic distortion V2 %HD63 H63 Harmonic distortion %HD V3 V3/V31 Harmonic Distortions 1 X3 %HD01 H01 Harmonic distortion X3 %HD02 H02 Harmonic distortion X3 %HD03 H63 Harmonic distortion X3 %HD04 H01 Harmonic distortion X3 %HD05 H63 Harmonic distortion X3 %HD63 H63 Harmonic distortion X4 %HD01 H01 Harmonic distortion X4 %HD02 H02 Harmonic distortion X4 %HD03 H63 Harmonic distortion X4 %HD04 H01 Harmonic distortion X4 %HD05 H63 Harmonic distortion X4 %HD04 H01 Harmonic distortion X4 %HD05 H63 Harmonic distortion X4 %HD01 H01 Harmonic distortion X4 %HD02 H02 Harmonic distortion X4 %HD03 H63 Harmonic distortion X4 %HD04 H01 Harmonic distortion X4 %HD05 H63 Harmonic distortion X4 %HD04 H01 Harmonic distortion X4 %HD05 H63 Harmonic distortion X4 %HD03 H63 Harmonic distor		
V2 %HD02 H02 Harmonic distortion V2 %HD63 H63 Harmonic distortion V3 %HD03 H63 Harmonic Distortions 1 V3 %HD01 H01 Harmonic distortion V3 %HD02 H02 Harmonic distortion <td></td> <td></td>		
V2 %HD63 H63 Harmonic distortion %HD V3 V3/V31 Harmonic Distortions 1 V3 %HD01 H01 Harmonic distortion V3 %HD02 H02 Harmonic distortion V3 %HD63 H63 Harmonic distortion V3 %HD63 H63 Harmonic distortion V4 %HD01 H01 Harmonic distortion V4 %HD02 H02 Harmonic distortion <t< td=""><td></td><td></td></t<>		
%HD V3 V3/V31 Harmonic Distortions 1 V3 %HD01 H01 Harmonic distortion V3 %HD02 H02 Harmonic distortion V3 %HD63 H63 Harmonic distortion %HD1 H01 Harmonic distortion %HD2 H02 Harmonic distortion %HD01 H01 Harmonic distortion %HD01 H01 Harmonic distortion %HD02 H02 Harmonic distortion	V2 %HD02	H02 Harmonic distortion
%HD V3 V3/V31 Harmonic Distortions 1 V3 %HD01 H01 Harmonic distortion V3 %HD02 H02 Harmonic distortion V3 %HD63 H63 Harmonic distortion %HD1 H01 Harmonic distortion %HD2 H02 Harmonic distortion %HD01 H01 Harmonic distortion %HD01 H01 Harmonic distortion %HD02 H02 Harmonic distortion		
V3 %HD01 H01 Harmonic distortion V3 %HD02 H02 Harmonic distortion V3 %HD63 H63 Harmonic distortion V4 %HD01 H01 Harmonic Distortions V4 %HD02 H02 Harmonic distortion V4 %HD03 H63 Harmonic distortion V4 %HD04 H01 Harmonic distortion V4 %HD05 H02 Harmonic distortion V4 %HD63 H63 Harmonic distortion MHD 1 1 Harmonic Distortions 1 %HD01 H01 Harmonic distortion 1 %HD02 H02 Harmonic distortion 1 %HD03 H63 Harmonic distortion 1 %HD63 H63 Harmonic distortion 1 %HD63 H63 Harmonic distortion 2 %HD01 H01 Harmonic distortion 2 %HD01 H01 Harmonic distortion 2 %HD02 H02 Harmonic distortion 2 %HD03 H63 Harmonic distortion 2 %HD03 H03 Harmonic distortion 3 %HD03 H03 Harmonic distortion		
V3 %HD02 H02 Harmonic distortion V3 %HD63 H63 Harmonic distortion %HD V4 V4 Harmonic Distortions V4 %HD01 H01 Harmonic distortion V4 %HD02 H02 Harmonic distortion V4 %HD63 H63 Harmonic distortion V4 %HD63 H63 Harmonic distortion <td< td=""><td></td><td></td></td<>		
V3 %HD63 H63 Harmonic distortion V4 %HD04 V4 Harmonic Distortions V4 %HD01 H01 Harmonic distortion V4 %HD02 H02 Harmonic distortion V4 %HD03 H63 Harmonic distortion V4 %HD63 H63 Harmonic distortion %HD 11 11 Harmonic Distortions 1 %HD01 H01 Harmonic distortion 1 %HD02 H02 Harmonic distortion 1 %HD03 H63 Harmonic distortion 1 %HD04 H01 Harmonic distortion 1 %HD63 H63 Harmonic distortion 1 %HD63 H63 Harmonic distortion 1 %HD63 H63 Harmonic distortion 2 %HD01 H01 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD63 H63 Harmonic distortion 3 %HD01 H01 Harmonic distortion		
%HD V4 V4 Harmonic Distortions V4 %HD01 H01 Harmonic distortion V4 %HD02 H02 Harmonic distortion V4 %HD63 H63 Harmonic distortion V4 %HD63 H63 Harmonic distortion V4 %HD01 1 Harmonic Distortions 1 %HD01 H01 Harmonic distortion 1 %HD02 H02 Harmonic distortion 1 %HD03 H63 Harmonic distortion 1 %HD63 H63 Harmonic distortion 1 %HD63 H63 Harmonic distortion 1 %HD02 H02 Harmonic distortion 2 %HD01 H01 Harmonic distortion 2 %HD03 H63 Harmonic distortion 2 %HD03 H63 Harmonic distortion 3 %HD63 H63 Harmonic distortion	V3 %HD02	H02 Harmonic distortion
%HD V4 V4 Harmonic Distortions V4 %HD01 H01 Harmonic distortion V4 %HD02 H02 Harmonic distortion V4 %HD63 H63 Harmonic distortion V4 %HD63 H63 Harmonic distortion V4 %HD01 1 Harmonic Distortions 1 %HD01 H01 Harmonic distortion 1 %HD02 H02 Harmonic distortion 1 %HD03 H63 Harmonic distortion 1 %HD63 H63 Harmonic distortion 1 %HD63 H63 Harmonic distortion 1 %HD02 H02 Harmonic distortion 2 %HD01 H01 Harmonic distortion 2 %HD03 H63 Harmonic distortion 2 %HD03 H63 Harmonic distortion 3 %HD63 H63 Harmonic distortion		
V4 %HD01 H01 Harmonic distortion V4 %HD02 H02 Harmonic distortion V4 %HD63 H63 Harmonic distortion %HD 11 11 Harmonic Distortions 1 %HD01 H01 Harmonic distortion 1 %HD02 H02 Harmonic distortion 1 %HD03 H63 Harmonic distortion 1 %HD04 H01 Harmonic distortion 1 %HD63 H63 Harmonic distortion 1 %HD63 H63 Harmonic distortion %HD12 12 Harmonic distortion 2 %HD01 H01 Harmonic distortion 2 %HD02 H02 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD01 H01 Harmonic distortion 3 %HD02 H02 Harmonic distortion 3 %HD03 H63 Harmonic		
V4 %HD02 H02 Harmonic distortion V4 %HD63 H63 Harmonic distortion %HD 11 11 Harmonic Distortions 1 %HD01 H01 Harmonic distortion 1 %HD02 H02 Harmonic distortion 1 %HD63 H63 Harmonic distortion 2 %HD03 H63 Harmonic distortion 2 %HD03 H63 Harmonic distortion 3 %HD03 H03 Harmonic distortion	%HD V4	
V4 %HD63 H63 Harmonic distortion %HD I1 1 Harmonic Distortions 1 %HD01 H01 Harmonic distortion 1 %HD02 H02 Harmonic distortion 1 %HD63 H63 Harmonic distortion 1 %HD63 H63 Harmonic distortion 1 %HD63 H63 Harmonic distortion %HD12 12 Harmonic Distortions 2 %HD01 H01 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD01 H01 Harmonic distortion 3 %HD02 H02 Harmonic distortion 3 %HD03 H63 Harmonic distortion 3 %HD04 H01 Harmonic distortion 3 %HD	V4 %HD01	H01 Harmonic distortion
%HD I1 1 Harmonic Distortions 1 %HD01 H01 Harmonic distortion 1 %HD02 H02 Harmonic distortion 1 %HD63 H63 Harmonic distortion %HD I2 2 Harmonic Distortions 2 %HD01 H01 Harmonic distortion 2 %HD02 H02 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD63 H63 Harmonic distortion 3 %HD01 H01 Harmonic distortion 3 %HD63 H63 Harmonic distortion 3 %HD63 H63 Harmonic distortion	V4 %HD02	H02 Harmonic distortion
%HD I1 1 Harmonic Distortions 1 %HD01 H01 Harmonic distortion 1 %HD02 H02 Harmonic distortion 1 %HD63 H63 Harmonic distortion %HD I2 2 Harmonic Distortions 2 %HD01 H01 Harmonic distortion 2 %HD02 H02 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD63 H63 Harmonic distortion 3 %HD01 H01 Harmonic distortion 3 %HD63 H63 Harmonic distortion 3 %HD63 H63 Harmonic distortion		
1 %HD01 H01 Harmonic distortion 1 %HD02 H02 Harmonic distortion 1 %HD63 H63 Harmonic distortion %HD12 2 Harmonic Distortions 2 %HD01 H01 Harmonic distortion 2 %HD02 H02 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD01 H01 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD63 H63 Harmonic distortion %HD13 13 Harmonic distortion 3 %HD02 H02 Harmonic distortion 3 %HD63 H63 Harmonic distortion %HD14 4 Harmonic Distortions 4 %HD01 H01 Harmonic distortion 4 %HD63 H63 Harmonic distortion 4 %HD63 H63 Harmonic distortion NTHRM %HD V1 V1/V12 Interharmonic Dist	V4 %HD63	H63 Harmonic distortion
1 %HD02 H02 Harmonic distortion 1 %HD63 H63 Harmonic distortion %HD 12 12 Harmonic Distortions 2 %HD01 H01 Harmonic distortion 2 %HD02 H02 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD63 H63 Harmonic distortion %HD01 H01 Harmonic distortion 3 %HD02 H02 Harmonic distortion 3 %HD63 H63 Harmonic distortion 3 %HD63 H63 Harmonic distortion	%HD I1	11 Harmonic Distortions
1 %HD63 H63 Harmonic distortion %HD 12 2 Harmonic Distortions 2 %HD01 H01 Harmonic distortion 2 %HD02 H02 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD01 H01 Harmonic distortion 2 %HD63 H63 Harmonic distortion %HD13 I3 Harmonic distortions 3 %HD02 H02 Harmonic distortion 3 %HD63 H63 Harmonic distortion %HD14 4 Harmonic Distortions 4 %HD01 H01 Harmonic distortion 4 %HD02 H02 Harmonic distortion 4 %HD63 H63 Harmonic distortion 4 %HD63 H63 Harmonic distortion 4 %HD63 H63 Harmonic distortion NTHRM %HD V1 V1/V12 Interharmonic Distortions 1	11 %HD01	H01 Harmonic distortion
1 %HD63 H63 Harmonic distortion %HD 12 2 Harmonic Distortions 2 %HD01 H01 Harmonic distortion 2 %HD02 H02 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD63 H63 Harmonic distortion 2 %HD01 H01 Harmonic distortion 2 %HD63 H63 Harmonic distortion %HD13 I3 Harmonic distortions 3 %HD02 H02 Harmonic distortion 3 %HD63 H63 Harmonic distortion %HD14 4 Harmonic Distortions 4 %HD01 H01 Harmonic distortion 4 %HD02 H02 Harmonic distortion 4 %HD63 H63 Harmonic distortion 4 %HD63 H63 Harmonic distortion 4 %HD63 H63 Harmonic distortion NTHRM %HD V1 V1/V12 Interharmonic Distortions 1	11 %HD02	H02 Harmonic distortion
%HD I2 I2 Harmonic Distortions 2 %HD01 H01 Harmonic distortion 2 %HD02 H02 Harmonic distortion 2 %HD63 H63 Harmonic distortion %HD I3 I3 Harmonic Distortions 3 %HD01 H01 Harmonic distortion 3 %HD02 H02 Harmonic distortion 3 %HD03 H63 Harmonic distortion 3 %HD63 H63 Harmonic distortion 3 %HD63 H63 Harmonic distortion %HD I4 4 Harmonic Distortions 4 %HD01 H01 Harmonic distortion 4 %HD02 H02 Harmonic distortion 4 %HD63 H63 Harmonic distortion 4 %HD63 H63 Harmonic distortion NTHRM %HD V1 V1/V12 Interharmonic Distortions 1		
%HD I2 I2 Harmonic Distortions 2 %HD01 H01 Harmonic distortion 2 %HD02 H02 Harmonic distortion 2 %HD63 H63 Harmonic distortion %HD I3 I3 Harmonic Distortions 3 %HD01 H01 Harmonic distortion 3 %HD02 H02 Harmonic distortion 3 %HD03 H63 Harmonic distortion 3 %HD63 H63 Harmonic distortion 3 %HD63 H63 Harmonic distortion %HD I4 4 Harmonic Distortions 4 %HD01 H01 Harmonic distortion 4 %HD02 H02 Harmonic distortion 4 %HD63 H63 Harmonic distortion 4 %HD63 H63 Harmonic distortion NTHRM %HD V1 V1/V12 Interharmonic Distortions 1	11 %HD63	H63 Harmonic distortion
2 %HD01 H01 Harmonic distortion 2 %HD02 H02 Harmonic distortion 2 %HD63 H63 Harmonic distortion %HD13 I3 Harmonic Distortions 3 %HD01 H01 Harmonic distortion 3 %HD02 H02 Harmonic distortion 3 %HD63 H63 Harmonic distortion 3 %HD63 H63 Harmonic distortion %HD14 4 Harmonic Distortions 4 %HD01 H01 Harmonic distortion 4 %HD02 H02 Harmonic distortion 4 %HD63 H63 Harmonic distortion 4 %HD63 H63 Harmonic distortion 4 %HD63 H63 Harmonic distortion NTHRM %HD V1 V1/V12 Interharmonic Distortions 1	%HD 12	2 Harmonic Distortions
2 %HD02 H02 Harmonic distortion 2 %HD63 H63 Harmonic distortion %HD I3 I3 Harmonic Distortions 3 %HD01 H01 Harmonic distortion 3 %HD02 H02 Harmonic distortion 3 %HD63 H63 Harmonic distortion 3 %HD63 H63 Harmonic distortion %HD I4 4 Harmonic Distortions 4 %HD01 H01 Harmonic distortion 4 %HD02 H02 Harmonic distortion 4 %HD63 H63 Harmonic distortion 4 %HD63 H63 Harmonic distortion NTHRM %HD V1 V1/V12 Interharmonic Distortions 1	2 %HD01	H01 Harmonic distortion
2 %HD63 H63 Harmonic distortion 2 %HD63 H63 Harmonic Distortions 3 %HD01 H01 Harmonic distortion 3 %HD02 H02 Harmonic distortion 3 %HD63 H63 Harmonic distortion 3 %HD63 H63 Harmonic distortion 3 %HD01 H01 Harmonic distortion 4 %HD01 H01 Harmonic distortion 4 %HD02 H02 Harmonic distortion 4 %HD63 H63 Harmonic distortion NTHRM %HD V1 V1/V12 Interharmonic Distortions 1		
%HD I3 I3 Harmonic Distortions 3 %HD01 H01 Harmonic distortion 3 %HD02 H02 Harmonic distortion 3 %HD63 H63 Harmonic distortion %HD I4 4 Harmonic Distortions 4 %HD01 H01 Harmonic distortion 4 %HD02 H02 Harmonic distortion 4 %HD63 H63 Harmonic distortion NTHRM %HD V1 V1/V12 Interharmonic Distortions 1	,	
%HD I3 I3 Harmonic Distortions 3 %HD01 H01 Harmonic distortion 3 %HD02 H02 Harmonic distortion 3 %HD63 H63 Harmonic distortion %HD I4 4 Harmonic Distortions 4 %HD01 H01 Harmonic distortion 4 %HD02 H02 Harmonic distortion 4 %HD63 H63 Harmonic distortion NTHRM %HD V1 V1/V12 Interharmonic Distortions 1	2 %HD63	H63 Harmonic distortion
3 %HD01 H01 Harmonic distortion 3 %HD02 H02 Harmonic distortion 3 %HD63 H63 Harmonic distortion %HD14 4 Harmonic Distortions 4 %HD01 H01 Harmonic distortion 4 %HD02 H02 Harmonic distortion 4 %HD63 H63 Harmonic distortion NTHRM %HD V1 V1/V12 Interharmonic Distortions 1		
3 %HD02 H02 Harmonic distortion 3 %HD63 H63 Harmonic distortion %HD 14 4 Harmonic Distortions 4 %HD01 H01 Harmonic distortion 4 %HD02 H02 Harmonic distortion 4 %HD63 H63 Harmonic distortion NTHRM %HD V1 V1/V12 Interharmonic Distortions 1		
3 %HD63 H63 Harmonic distortion %HD I4 I4 Harmonic Distortions 4 %HD01 H01 Harmonic distortion 4 %HD02 H02 Harmonic distortion 4 %HD63 H63 Harmonic distortion NTHRM %HD V1 V1/V12 Interharmonic Distortions 1		
%HD I4 I4 Harmonic Distortions 4 %HD01 H01 Harmonic distortion 4 %HD02 H02 Harmonic distortion 4 %HD63 H63 Harmonic distortion NTHRM %HD V1 V1/V12 Interharmonic Distortions 1		
%HD I4 I4 Harmonic Distortions 4 %HD01 H01 Harmonic distortion 4 %HD02 H02 Harmonic distortion 4 %HD63 H63 Harmonic distortion NTHRM %HD V1 V1/V12 Interharmonic Distortions 1	 13 % HD63	H63 Harmonic distortion
4 %HD01 H01 Harmonic distortion 4 %HD02 H02 Harmonic distortion 4 %HD63 H63 Harmonic distortion NTHRM %HD V1 V1/V12 Interharmonic Distortions 1		
4 %HD02 H02 Harmonic distortion 4 %HD63 H63 Harmonic distortion NTHRM %HD V1 V1/V12 Interharmonic Distortions 1		
4 %HD63 H63 Harmonic distortion NTHRM %HD V1 V1/V12 Interharmonic Distortions 1		
NTHRM %HD V1 V1/V12 Interharmonic Distortions 1	14 %HDU2	HUZ Harmonic distortion
NTHRM %HD V1 V1/V12 Interharmonic Distortions 1		
HU1 Internarmonic distortion		
	V1 %IHD01	HU1 Internarmonic distortion

Designation	Description
V1 %IHD02	H02 Interharmonic distortion
•••	
V1 %IHD63	H63 Interharmonic distortion
INTHRM %HD V2	V2/V23 Interharmonic Distortions 1
V2 % IHD01	H01 Interharmonic distortion
V2 % IHD02	H02 Interharmonic distortion
V2 % IHD63	H63 Interharmonic distortion
INTHRM %HD V3	V3/V31 Interharmonic Distortions 1
V3 % IHD01	H01 Interharmonic distortion
V3 % IHD01	H02 Interharmonic distortion
 V3 % IHD63	H63 Interharmonic distortion
ANG V1	V1/V12 Harmonic Angles
V1 H01 ANG	H01 Harmonic angle
V1 H02 ANG	H02 Harmonic angle
V1 H63 ANG	H63 Harmonic angle
ANG V2	V2/V23 Harmonic Angles
V2 H01 ANG	H01 Harmonic angle
V2 H02 ANG	H02 Harmonic angle
V2 H63 ANG	H63 Harmonic angle
ANG V3	V3/V31 Harmonic Angles
V3 H01 ANG	H01 Harmonic angle
V3 H02 ANG	H02 Harmonic angle
V3 H63 ANG	H63 Harmonic angle
ANG V4	V4 Harmonic Angles
V4 H01 ANG	H01 Harmonic angle
V4 H02 ANG	H02 Harmonic angle
111027410	
V4 H63 ANG	H63 Harmonic angle
ANG I1	I1 Harmonic Angles
I1 H01 ANG	H01 Harmonic angle
I1 H02 ANG	H02 Harmonic angle
TI HUZ ANG	
11 H63 ANG ANG 12	H63 Harmonic angle
	2 Harmonic Angles
I2 H01 ANG	H01 Harmonic angle
I2 H02 ANG	H02 Harmonic angle
12 H63 ANG	H63 Harmonic angle
ANG I3	3 Harmonic Angles
I3 H01 ANG	H01 Harmonic angle
I3 H02 ANG	H02 Harmonic angle
I3 H63 ANG	H63 Harmonic angle
ANG I4	I4 Harmonic Angles
I4 H01 ANG	H01 Harmonic angle
I4 H02 ANG	H02 Harmonic angle
I4 H63 ANG	H63 Harmonic angle
HRM V1	V1/V12 Harmonic Voltages (odd harmonics) 1
V1 H01	H01 Harmonic voltage
V1 H03	H03 Harmonic voltage
	U
 V1 H63	H63 Harmonic voltage
HRM V2	V2/V23 Harmonic Voltages (odd harmonics) 1
V2 H01	H01 Harmonic voltage
V2 H03	H03 Harmonic voltage
V21100	
V2 H63	H63 Harmonic voltage
HRM V3	V3/V31 Harmonic Voltages (odd harmonics) 1
V3 H01	H01 Harmonic voltage
V3 H03	H03 Harmonic voltage
 V3 H63	H63 Harmonic voltage

HRN V4 V4 Hon V4 Hon V4 H01 H01 Harmonic voltage V4 H03 H03 Harmonic voltage W4 H03 H63 Harmonic voltage W4 H03 H63 Harmonic voltage HRM 11 1 Harmonic Currents (odd harmonics) 11 H01 H01 Harmonic current 11 H03 H03 Harmonic current 11 H03 H03 Harmonic current HRM 12 12 Harmonic Current (ATRM NES) 12 H01 H01 Harmonic current HRM 12 12 Harmonic Current W163 H63 Harmonic current W163 H03 Harmonic current W163 H03 Harmonic current W173 13 Harmonic current W183 13 Harmonic current W183 Harmonic current W183 H63 Harmonic current W183 H63 Harmonic current W144 Harmonic current W144 Harmonic current W144 Harmonic current W144 Harmonic current W144 Harmonic current W144 Harmonic current W144 Harmonic current <th>Destauration</th> <th>Description</th>	Destauration	Description
V4 H01 H01 Harmonic voltage V4 H03 H03 Harmonic voltage V4 H03 H03 Harmonic currents (odd harmonics) 11 H01 1 Harmonic current 11 H03 H03 Harmonic current 11 H03 H03 Harmonic current 2 H03 H03 Harmonic current 3 H03 H03 Harmonic current <t< th=""><th>Designation</th><th>Description</th></t<>	Designation	Description
V4 H03 H03 Harmonic voltage V4 H63 H63 Harmonic Currents (odd harmonics) HRM 11 1 Harmonic Currents (odd harmonics) 11 H01 H03 Harmonic current W W W1 H03 Harmonic current W1 H03 H63 Harmonic current W1 H03 H03 Harmonic current W1 H03 H03 Harmonic current W1 H03 H63 Harmonic current W1 H03 H63 Harmonic current W1 H03 H63 Harmonic current W1 H03 H63 Harmonic current W1 H03 H63 Harmonic current W1 H03 H63 Harmonic current HRM H3 H63 Harmonic current HRM H4 H Harmonic current HRM H4 H Harmonic current HRM H4 H Harmonic with (odd harmonics) HW14 H Harmonic with (odd harmonics) HW14 H Harmonic with (odd harmonics) HRM KW Total Harmonic kW (odd harmonics) WW H03 H03 Harmonic kW W145 H63 Harmonic kW W1463 H63 Harmonic kW <		
HG3 Harmonic voltage HRM 11 1 Harmonic Currents (odd harmonics) 11 H01 H01 Harmonic current 11 H03 H03 Harmonic current 2 H01 H01 Harmonic current 2 H03 H03 Harmonic current 2 H03 H03 Harmonic current 2 H03 H03 Harmonic current 2 H03 H03 Harmonic current 3 H03 H03 Harmonic current 3 H03 H03 Harmonic current 4 H01 H01 Harmonic Current 4 H03 Harmonic current <t< td=""><td></td><td></td></t<>		
HRM 11 1 Harmonic Currents (odd harmonics) 11 H01 H01 Harmonic current 11 H03 La 11 H03 H03 Harmonic current 11 H03 La 11 H03 H03 Harmonic current 11 H03 La 11 H03 La 11 H04 La Harmonic Currents (odd harmonics) 2 H03 H03 Harmonic current 2 H03 H03 Harmonic current 2 H03 H03 Harmonic current 3 H03 H03 Harmonic current 3 H03 H03 Harmonic current 3 H03 H03 Harmonic current 13 H03 H03 Harmonic current 14 H01 4 Harmonic Current 14 H03 Harmonic Kurrent 14 H03 H3 Harmonic KW (odd harmonics) WW H01 H01 Harmonic KW WH03 H03 Harmonic KW WH03 H03 Harmonic KW WH03 H03 Harmonic KW WH03 H03 Harmonic KW WH04 H01 Harmonic KW WH05 H03 Harmonic KW WH143 </td <td>V4 H03</td> <td>H03 Harmonic voltage</td>	V4 H03	H03 Harmonic voltage
HRM 11 1 Harmonic Currents (odd harmonics) 11 H01 H01 Harmonic current 11 H03 La 11 H03 H03 Harmonic current 11 H03 La 11 H03 H03 Harmonic current 11 H03 La 11 H03 La 11 H04 La Harmonic Currents (odd harmonics) 2 H03 H03 Harmonic current 2 H03 H03 Harmonic current 2 H03 H03 Harmonic current 3 H03 H03 Harmonic current 3 H03 H03 Harmonic current 3 H03 H03 Harmonic current 13 H03 H03 Harmonic current 14 H01 4 Harmonic Current 14 H03 Harmonic Kurrent 14 H03 H3 Harmonic KW (odd harmonics) WW H01 H01 Harmonic KW WH03 H03 Harmonic KW WH03 H03 Harmonic KW WH03 H03 Harmonic KW WH03 H03 Harmonic KW WH04 H01 Harmonic KW WH05 H03 Harmonic KW WH143 </td <td></td> <td></td>		
11 H01 H01 Harronic current 11 H03 H03 Harronic current 11 H03 H03 Harronic current 11 H03 H03 Harronic current 12 H01 H01 Harronic current 2 H01 H01 Harronic current 2 H03 H03 Harronic current 2 H01 H01 Harronic current 2 H03 H03 Harronic current 2 H03 H03 Harronic current 3 H03 H03 Harronic current 3 H03 H03 Harronic current		
11 H03 H03 Harmonic current In H63 H63 H63 Harmonic current HRM 12 12 Harmonic current 2 H01 H01 Harmonic current 2 H03 H03 Harmonic current 12 H03 H03 Harmonic current 14 H03 H3 Harmonic current 15 H03 H63 Harmonic current 16 H3 H3 Harmonic current 17 H8 H3 18 H01 H01 Harmonic current 3 H03 H03 Harmonic current 3 H03 H03 Harmonic current 3 H03 H03 Harmonic current 4 H01 H01 Harmonic current 4 H03 H63 Harmonic current 14 H63 H63 Harmonic current 14 H63 H63 Harmonic kW W101 H01 Harmonic kW W103 H03 Harmonic kW W104 H01 Harmonic kW W105 H63 Harmonic kW W106 H03 Harmonic kW W107 H01 Harmonic kW W108 H63 Harmonic FP PH H01 H		
1 H63 H63 Harmonic current HRM 12 2 Harmonic current 2 H03 H03 Harmonic current 2 H03 H03 Harmonic current 2 H63 H63 Harmonic current 3 H01 H01 Harmonic current 3 H03 H03 Harmonic current 3 H03 H03 Harmonic current 3 H03 H03 Harmonic current 3 H03 H03 Harmonic current 3 H03 H03 Harmonic current H63 H63 Harmonic current H63 H63 H63 Harmonic KW K04 harmonics) WW H01 H01 Harmonic KW K04 harmonics) WW H03 H03 Harmonic KW H03 H763 H63 Harmonic KW H764 H764 H63 H63 Harmonic KW WH03 H03 Harmonic KW W1403 WH04 H01 Harmonic KW W1403 WW H01 H01 Harmonic KW W1403 WW H03 H03 Harmonic KW H764 <td>-</td> <td></td>	-	
HRM 12 2 Harmonic Current (odd harmonics) 2 H01 H01 Harmonic current 2 H03 H03 Harmonic current 2 H03 H03 Harmonic current HRM 13 13 Harmonic current HRM 13 13 Harmonic current 13 H01 H01 Harmonic current 3 H03 H03 Harmonic current 3 H03 H03 Harmonic current 3 H03 H03 Harmonic current 13 H03 H03 Harmonic current 14 H01 H01 Harmonic current 14 H03 H03 Harmonic current 14 H03 H03 Harmonic kW (odd harmonics) WW H01 H01 Harmonic kW WH03 H03 Harmonic kW WW H03 H03 Harmonic kW WW H03 H03 Harmonic kwr WW H04 H04 Harmonic kwr WW H05 H03 Harmonic kwr WW H03 H03 Harmonic kwr WW H04 H04 Harmonic kwr WW H05 H03 Harmonic kwr WW H04 H04 Harmonic kwr WW H05 H04 Harmonic kwr HM63 H63 Harm	I1 H03	H03 Harmonic current
HRM 12 2 Harmonic Current (odd harmonics) 2 H01 H01 Harmonic current 2 H03 H03 Harmonic current 2 H03 H03 Harmonic current HRM 13 13 Harmonic current HRM 13 13 Harmonic current 13 H01 H01 Harmonic current 3 H03 H03 Harmonic current 3 H03 H03 Harmonic current 3 H03 H03 Harmonic current 13 H03 H03 Harmonic current 14 H01 H01 Harmonic current 14 H03 H03 Harmonic current 14 H03 H03 Harmonic kW (odd harmonics) WW H01 H01 Harmonic kW WH03 H03 Harmonic kW WW H03 H03 Harmonic kW WW H03 H03 Harmonic kwr WW H04 H04 Harmonic kwr WW H05 H03 Harmonic kwr WW H03 H03 Harmonic kwr WW H04 H04 Harmonic kwr WW H05 H03 Harmonic kwr WW H04 H04 Harmonic kwr WW H05 H04 Harmonic kwr HM63 H63 Harm		
12 H01 H01 Harmonic current 12 H03 H03 Harmonic current 12 H63 H63 Harmonic current 12 H63 H63 Harmonic current 13 H01 H01 Harmonic current 13 H03 H03 Harmonic current 13 H03 H03 Harmonic current 13 H03 H03 Harmonic current 14 H01 H01 Harmonic current 14 H03 Harmonic current 14 H03 H03 Harmonic current 14 H03 H03 Harmonic current 14 H03 H03 Harmonic current 14 H03 H03 Harmonic kW 14 H63 H63 Harmonic kwar 12 Harmonic kwar Intal Harmonic kwar 13 H01 H01 Harmonic kwar 14 H7 H1 Harmonic kwar 14 H8 Kwar Total Harmonic kwar 14 H8 Harmonic kwar Intal Harmonic kwar 14 H7 H1 Harmonic kwar 14 H8 Harmonic kwar Intal Harmonic kwar 14	I1 H63	
12 H03 H03 Harmonic current 2 H63 H63 Harmonic current HRM 13 13 Harmonic current 3 H01 H01 Harmonic current 3 H03 H03 Harmonic current </td <td>HRM I2</td> <td>2 Harmonic Currents (odd harmonics)</td>	HRM I2	2 Harmonic Currents (odd harmonics)
2 H63 H63 Harmonic Current 18M1 3 Harmonic Current 13 H01 H01 Harmonic current 13 H03 Harmonic current 13 H03 Harmonic current 13 H63 H64 HRM 14 4 Harmonic current 14 H01 H01 Harmonic current 14 H03 Harmonic current 14 H03 Harmonic kW 14 H63 H63 Harmonic kW 14 H63 H63 Harmonic kW 14 H63 H63 Harmonic kW 14 H63 H63 Harmonic kW 13 H63 H63 Harmonic kvar 14 H63 H63 Harmonic kvar 14 H64 Harmonic kvar 14 H64 Harmonic kvar 14 H64 Harmonic kvar 14 H63 H63 Harmonic PF 15 H01 H01 Harmonic PF 16 H63 H63 Harmonic PF <	I2 H01	H01 Harmonic current
HRM 13 3 Harmonic Currents (odd harmonics) 3 H01 H01 Harmonic current 3 H03 H03 Harmonic current 3 H63 H63 Harmonic Current HRM 14 4 Harmonic Current (odd harmonics) 4 H01 H01 Harmonic current 4 H03 H03 Harmonic current 4 H03 H63 Harmonic current 4 H03 H63 Harmonic KW (odd harmonics) WW H03 H03 Harmonic KW WH03 H03 Harmonic KW WW H03 H03 Harmonic KW HRM kvar Total Harmonic kvar	I2 H03	H03 Harmonic current
HRM 13 3 Harmonic Currents (odd harmonics) 3 H01 H01 Harmonic current 3 H03 H03 Harmonic current 3 H63 H63 Harmonic Current HRM 14 4 Harmonic Current (odd harmonics) 4 H01 H01 Harmonic current 4 H03 H03 Harmonic current 4 H03 H63 Harmonic current 4 H03 H63 Harmonic KW (odd harmonics) WW H03 H03 Harmonic KW WH03 H03 Harmonic KW WW H03 H03 Harmonic KW HRM kvar Total Harmonic kvar		
13 H01 H01 Harmonic current 13 H03 H03 Harmonic current 13 H63 H63 Harmonic current 14 H01 H61 Harmonic current 14 H01 H01 Harmonic current 14 H03 H03 Harmonic current 14 H03 H03 Harmonic current 14 H63 H63 Harmonic current 14 H63 H63 Harmonic KW (odd harmonics) WW H01 H01 Harmonic KW W03 H03 Harmonic KW WH03 H03 Harmonic KW WH03 H03 Harmonic Kwa WW H03 H03 Harmonic Kwa WW H03 H03 Harmonic Kwar WW H03 H03 Harmonic Kvar WW F03 H03 Harmonic FF WW H03 H03 Harmonic PF H04 Harmonic PF H05 H04 Harmonic PF H1 H2 MASE Fundamental Phase Values V1 H01 V1/v12 Voltage 1	I2 H63	H63 Harmonic current
13 H03 H03 Harmonic current 33 H63 H63 Harmonic Current HRM I4 4 H63 Harmonic Current H4 H01 H01 Harmonic current 44 H03 H03 Harmonic current 44 H63 H63 Harmonic current 44 H63 H63 Harmonic KW WH01 H01 Harmonic KW WW H03 H03 Harmonic KW WW H03 H03 Harmonic kvar WW H03 H03 Harmonic kvar WW H03 H03 Harmonic kvar	HRM I3	3 Harmonic Currents (odd harmonics)
	I3 H01	H01 Harmonic current
HRM I4 4 Harmonic Currents (odd harmonics) 4 H01 H01 Harmonic current 4 H03 Harmonic current 4 H63 H63 Harmonic current HRM kW Total Harmonic kW (odd harmonics) KW H01 H01 Harmonic kW KW H03 H03 Harmonic kW KW H03 H03 Harmonic kW WW H63 H63 Harmonic kW KW H63 H63 Harmonic kwar Kvar H01 H01 Harmonic kvar Kvar H03 H03 Harmonic kvar Kvar H63 H63 Harmonic kvar Kvar H63 H63 Harmonic kvar HRM PF Total Harmonic PF FH H01 H01 Harmonic PF FH H03 H03 Harmonic PF H1 PHASE Fundamental Phase Values V1 H01 V1/V12 Valtage 1 V1 H01 V1/V12 Valtage 1 V1 H01 V1/V12 Valtage 1 V2 H01 V2/V23 Voltage 1 V3 H01 V3/V31 Voltage 1 V3 H01 V2/V33 Voltage 1 V3 H01 KV L1 KW L1 H01 KW L1 KW L2 H01	I3 H03	H03 Harmonic current
HRM I4 4 Harmonic Currents (odd harmonics) 4 H01 H01 Harmonic current 4 H03 Harmonic current 4 H63 H63 Harmonic current HRM kW Total Harmonic kW (odd harmonics) KW H01 H01 Harmonic kW KW H03 H03 Harmonic kW KW H03 H03 Harmonic kW WW H63 H63 Harmonic kW KW H63 H63 Harmonic kwar Kvar H01 H01 Harmonic kvar Kvar H03 H03 Harmonic kvar Kvar H63 H63 Harmonic kvar Kvar H63 H63 Harmonic kvar HRM PF Total Harmonic PF FH H01 H01 Harmonic PF FH H03 H03 Harmonic PF H1 PHASE Fundamental Phase Values V1 H01 V1/V12 Valtage 1 V1 H01 V1/V12 Valtage 1 V1 H01 V1/V12 Valtage 1 V2 H01 V2/V23 Voltage 1 V3 H01 V3/V31 Voltage 1 V3 H01 V2/V33 Voltage 1 V3 H01 KV L1 KW L1 H01 KW L1 KW L2 H01		
44 H01 H01 Harmonic current 44 H03 H03 Harmonic current 44 H63 H63 Harmonic current HRM kW Total Harmonic kW (odd harmonics) kW H03 H03 Harmonic kW W04 H01 H01 Harmonic kW WW H03 H03 Harmonic kW WW H03 H03 Harmonic kW WW H03 H03 Harmonic kW WW H03 H03 Harmonic kwar WW H03 H03 Harmonic kvar WW H03 H03 Harmonic kvar WW H03 H03 Harmonic kvar Wwar H03 H03 Harmonic kvar Wwar H03 H03 Harmonic kvar Wwar H03 H03 Harmonic PF PF H03 H03 Harmonic PF PF H03 H03 Harmonic PF PF H03 H03 Harmonic PF PF H03 H03 Harmonic PF W1 H01 V1/V12 Voltage 1 V2 H01 V2/V23 Voltage 1 V3 H01 V3/V31 Voltage 1 14 H01 1 Current 2 H01 2 Current 3 H01 3 Current KW L1 H01 KW L1 KW L2 H01 KW L2 <td>I3 H63</td> <td>H63 Harmonic current</td>	I3 H63	H63 Harmonic current
44 H01 H01 Harmonic current 44 H03 H03 Harmonic current 44 H63 H63 Harmonic current HRM kW Total Harmonic kW (odd harmonics) kW H03 H03 Harmonic kW W04 H01 H01 Harmonic kW WW H03 H03 Harmonic kW WW H03 H03 Harmonic kW WW H03 H03 Harmonic kW WW H03 H03 Harmonic kwar WW H03 H03 Harmonic kvar WW H03 H03 Harmonic kvar WW H03 H03 Harmonic kvar Wwar H03 H03 Harmonic kvar Wwar H03 H03 Harmonic kvar Wwar H03 H03 Harmonic PF PF H03 H03 Harmonic PF PF H03 H03 Harmonic PF PF H03 H03 Harmonic PF PF H03 H03 Harmonic PF W1 H01 V1/V12 Voltage 1 V2 H01 V2/V23 Voltage 1 V3 H01 V3/V31 Voltage 1 14 H01 1 Current 2 H01 2 Current 3 H01 3 Current KW L1 H01 KW L1 KW L2 H01 KW L2 <td>HRM I4</td> <td>4 Harmonic Currents (odd harmonics)</td>	HRM I4	4 Harmonic Currents (odd harmonics)
14 H03 H03 Harmonic current HRM kW Total Harmonic kW (odd harmonics) kW H01 H01 Harmonic kW WV H03 H03 Harmonic kW WW H03 H03 Harmonic kW WW H03 H03 Harmonic kW WW H03 H03 Harmonic kW WH K83 H63 Harmonic kvar	I4 H01	
	I4 H03	H03 Harmonic current
HRM kW Total Harmonic kW (odd harmonics) kW H01 H01 Harmonic kW WW H03 H03 Harmonic kW kW H63 H63 Harmonic kW RM kvar Total Harmonic kvar (odd harmonics) kvar H01 H01 Harmonic kvar kvar H03 H03 Harmonic kvar		
HRM kW Total Harmonic kW (odd harmonics) kW H01 H01 Harmonic kW WW H03 H03 Harmonic kW kW H63 H63 Harmonic kW RM kvar Total Harmonic kvar (odd harmonics) kvar H01 H01 Harmonic kvar kvar H03 H03 Harmonic kvar	I4 H63	H63 Harmonic current
KW H01 H01 Harmonic kW KW H03 H03 Harmonic kW KW H63 H63 Harmonic kW KW H63 H63 Harmonic kvar (odd harmonics) Kvar H01 H01 Harmonic kvar Kvar H03 H03 Harmonic kvar Kvar H03 H03 Harmonic kvar Kvar H03 H03 Harmonic kvar Kvar H03 H03 Harmonic kvar Kvar H63 H63 Harmonic PF FH01 H01 Harmonic PF FH03 H03 Harmonic PF M MC Y2/V23 Voltage 1 V2 H01 V2/V23 Voltage 1 V2 H01 V2/V23 Voltage 1 V3 H01 V3/V31 Voltage 1 V3 H01 V3/V31 Voltage 1 V3 H01 V2/V23 Voltage 1 V3 H01 V2/V23 Voltage 1 V3 H01 V2/V23 Voltage 1 V3 H01 V2/V23 Voltage 1 V3 H01 V2/V23 Voltage 1 V3 H01 V2/V23 Voltage 1 V3 H01 V2/V23 Voltage 1 V3 H01 V2/V23 Voltage 1 V3 H01	HRM kW	
kW H03 H03 Harmonic kW W H63 H63 Harmonic kW HRM kvar Total Harmonic kvar (odd harmonics) kvar H01 H01 Harmonic kvar kvar H03 H03 Harmonic kvar kvar H63 H63 Harmonic kvar mmonic kvar kvar H63 H63 Harmonic kvar HRM PF Total Harmonic PF PF H01 H01 Harmonic PF mmonic PF H63 H63 Harmonic PF M101 V1/V12 Voltage 1 V2 H01 V2/V23 Voltage 1 V3 H01 V3/V31 Voltage 1 11 H01 1 Current 2 H01 2 Current 3 H03 Scurrent KW L1 H01 kW L1 kW L2 H01 kW L3 kvar L3 H01 kvar L3 kvar L4 H01 kvar L4 kvA L4 H01 kvA L3 kvA L4 H01 kvA L3 <t< td=""><td></td><td></td></t<>		
KW H63 H63 Harmonic kW HRM kvar Total Harmonic kvar kvar H01 H01 Harmonic kvar kvar H03 H03 Harmonic kvar kvar H03 H03 Harmonic kvar	-	
HRM kvar Total Harmonic kvar (odd harmonics) kvar H01 H01 Harmonic kvar kvar H03 H03 Harmonic kvar kvar H63 H63 Harmonic kvar HRM PF Total Harmonic PF (odd harmonics) PF H01 H01 Harmonic PF PF H03 H03 Harmonic PF H1 PHASE Fundamental Phase Values V1 H01 V1/V12 Voltage 1 V2 H01 V2/V23 Voltage 1 V3 H01 V3/V31 Voltage 1 V3 H01 V3/V31 Voltage 1 V3 H01 S Current I3 H01 S Current KW L2 H01 kW L2 kW L1 H01 kW L2 kW L2 H01 kW L3 kvar L3 H01 kvar L3 kvar L4 H01 kVA L4 kVA L2 H01 kVA L4 kVA L2 H01 kVA L4 kVA L2 H01 kVA L4 kVA L3 H01 kVar L3 kvar L4 kvar L4 kvar L4 kvar L4 kvA L4 kvar L4 kvA L4 kvar L4 kvA L4 kvar L4		
HRM kvar Total Harmonic kvar (odd harmonics) kvar H01 H01 Harmonic kvar kvar H03 H03 Harmonic kvar kvar H63 H63 Harmonic kvar HRM PF Total Harmonic PF (odd harmonics) PF H01 H01 Harmonic PF PF H03 H03 Harmonic PF H1 PHASE Fundamental Phase Values V1 H01 V1/V12 Voltage 1 V2 H01 V2/V23 Voltage 1 V3 H01 V3/V31 Voltage 1 V3 H01 V3/V31 Voltage 1 V3 H01 S Current I3 H01 S Current KW L2 H01 kW L2 kW L1 H01 kW L2 kW L2 H01 kW L3 kvar L3 H01 kvar L3 kvar L4 H01 kVA L4 kVA L2 H01 kVA L4 kVA L2 H01 kVA L4 kVA L2 H01 kVA L4 kVA L3 H01 kVar L3 kvar L4 kvar L4 kvar L4 kvar L4 kvA L4 kvar L4 kvA L4 kvar L4 kvA L4 kvar L4	kW H63	H63 Harmonic kW
kvar H01 H01 Harmonic kvar kvar H03 H03 Harmonic kvar		
kvar H03 H03 Harmonic kvar kvar H63 H63 Harmonic kvar HRM PF Total Harmonic PF PF H01 H01 Harmonic PF PF H03 H03 Harmonic PF <tr< td=""><td></td><td></td></tr<>		
Image: Second		
HRM PF Total Harmonic PF (odd harmonics) PF H01 H01 Harmonic PF PF H03 H03 Harmonic PF PF H63 H63 Harmonic PF H1 PHASE Fundamental Phase Values V1 H01 V1/V12 Voltage 1 V2 H01 V2/V23 Voltage 1 V3 H01 V3/V31 Voltage 1 11 H01 1 Current 12 H01 2 Current 13 H01 13 Current KW L1 H01 kW L2 kW L2 H01 kW L2 kW L2 H01 kW L2 kW L2 H01 kvar L1 kvar L1 H01 kvar L2 kvar L2 H01 kvar L2 kvar L3 H01 kvar L3 kVA L1 H01 kvA L2 kvA L2 H01 kVA L2 kvA L2 H01 kVA L1 kvar L3 H01 kVA L1 kvA L2 H01 kVA L2 kVA L3 H01 kVA L2 kVA L3 H01 kVA L3 PF L3 H01 Power factor L2 PF L3 H01 Power fact	kval 1105	
HRM PF Total Harmonic PF (odd harmonics) PF H01 H01 Harmonic PF PF H03 H03 Harmonic PF PF H63 H63 Harmonic PF H1 PHASE Fundamental Phase Values V1 H01 V1/V12 Voltage 1 V2 H01 V2/V23 Voltage 1 V3 H01 V3/V31 Voltage 1 11 H01 1 Current 12 H01 2 Current 13 H01 13 Current KW L1 H01 kW L2 kW L2 H01 kW L2 kW L2 H01 kW L2 kW L2 H01 kvar L1 kvar L1 H01 kvar L2 kvar L2 H01 kvar L2 kvar L3 H01 kvar L3 kVA L1 H01 kvA L2 kvA L2 H01 kVA L2 kvA L2 H01 kVA L1 kvar L3 H01 kVA L1 kvA L2 H01 kVA L2 kVA L3 H01 kVA L2 kVA L3 H01 kVA L3 PF L3 H01 Power factor L2 PF L3 H01 Power fact	 kvar H63	H63 Harmonic kvar
PF H01 H01 Harmonic PF PF H03 H03 Harmonic PF PF H63 H63 Harmonic PF H1 PHASE Fundamental Phase Values V1 H01 V1/V12 Voltage 1 V2 H01 V2/V23 Voltage 1 V3 H01 V3/V31 Voltage 1 11 H01 1 Current 12 H01 12 Current 13 H01 3 Current 13 H01 KW L1 kW L2 H01 kW L2 kW L3 H01 kW L2 kwar L4 H01 kW L2 kvar L4 H01 kW L3 kvar L4 H01 kW L4 kvar L4 H01 kV L4 kvar L4 H01 kV L4 kvar L3 H01 kvar L3 kVA L1 H01 kVA L2 kVA L2 H01 kVA L3 PF L1 H01 Power factor L1 PF L2 H01 Power factor L2 PF L3 H01 Power factor L3 HRM TOT POW Fundamental KW kWar H01 Total fundamental kW kWar H01 Total fundamental kVA FH01 Total fundamental kVA		
PF H03 H03 Harmonic PF		
Image: Construct of the severity VI PF H63 H1 PHASE Fundamental Phase Values V1 H01 V1/V12 Voltage 1 V2 H01 V2/V23 Voltage 1 V3 H01 V2/V31 Voltage 1 I1 H01 I1 Current I2 H01 I2 Current I3 H01 KW L1 H01 kW L2 H01 kW L2 H01 kW L2 H01 kW L3 H01 kwar L1 H01 kwar L1 H01 kwar L2 H01 kwar L2 H01 kwar L2 H01 kvar L2 H01 kvar L2 H01 kvar L2 H01 kvar L3 H01 kvar L2 H01 kvA L2 H01 kVA L2 kVA L2 H01 kVA L2 kVA L2 H01 kVA L3 PF L1 H01 Power factor L1 PF L2 H01 Power factor L3 HRM TOT POW Fundamental Total Power Values kW H01 Total fundamental kvar kVA H01 <		
H1 PHASE Fundamental Phase Values V1 H01 V1/V12 Voltage 1 V2 H01 V2/V23 Voltage 1 V3 H01 V3/V31 Voltage 1 I1 H01 I Current I2 H01 I Current I3 H01 I Current I3 H01 I Current KW L1 H01 KW L1 kW L2 H01 kW L2 kW L3 H01 kW L3 kvar L1 H01 kW L3 kvar L2 H01 kVar L3 kvar L3 H01 kVA L1 kvar L4 H01 kVA L1 kvar L3 H01 kVA L1 kvar L4 H01 kVA L1 kvar L3 H01 kVA L2 kVA L4 H01 kVA L2 kVA L2 H01 kVA L2 kVA L3 H01 kVA L3 PF L1 H01 Power factor L1 PF L2 H01 Power factor L2 PF L3 H01 Power factor L3 HRM TOT POW Fundamental Total Power Values kW H01 Total fundamental kW kvar H01 Total fundamental kVA PF		
H1 PHASE Fundamental Phase Values V1 H01 V1/V12 Voltage 1 V2 H01 V2/V23 Voltage 1 V3 H01 V3/V31 Voltage 1 I1 H01 I Current I2 H01 I Current I3 H01 I Current I3 H01 I Current KW L1 H01 KW L1 kW L2 H01 kW L2 kW L3 H01 kW L3 kvar L1 H01 kW L3 kvar L2 H01 kVar L3 kvar L3 H01 kVA L1 kvar L4 H01 kVA L1 kvar L3 H01 kVA L1 kvar L4 H01 kVA L1 kvar L3 H01 kVA L2 kVA L4 H01 kVA L2 kVA L2 H01 kVA L2 kVA L3 H01 kVA L3 PF L1 H01 Power factor L1 PF L2 H01 Power factor L2 PF L3 H01 Power factor L3 HRM TOT POW Fundamental Total Power Values kW H01 Total fundamental kW kvar H01 Total fundamental kVA PF	 DE LI62	U62 Hormonia DE
V1 H01 V1/V12 Voltage 1 V2 H01 V2/V23 Voltage 1 V3 H01 V3/V31 Voltage 1 11 H01 11 Current 12 H01 12 Current 13 H01 13 Current kW L1 H01 kW L1 kW L2 H01 kW L1 kW L2 H01 kW L2 kW L3 H01 kW L3 kvar L1 H01 kwar L1 kvar L2 H01 kwar L2 kvar L3 H01 kvar L2 kvar L4 H01 kvar L3 kvar L4 H01 kvar L3 kvar L4 H01 kvar L4 kvar L5 kvar L3 kv4 L1 H01 kv4 L4 kv4 L4 kv4 L4		
V2 H01 V2/V23 Voltage 1 V2 H01 V2/V23 Voltage 1 V3 H01 V3/V31 Voltage 1 I1 H01 I Current 2 H01 2 Current 3 H01 3 Current kW L1 H01 kW L1 kW L2 H01 kW L2 kW L3 H01 kW L3 kvar L1 H01 kW L3 kvar L2 H01 kvar L1 kvar L3 H01 kvar L4 kVA L2 H01 kvar L3 kvar L3 H01 kvar L3 kVA L1 H01 kVA L1 kVA L2 H01 kVA L2 kVA L4 kVA L3 FL1 H01 kVA L2 kVA L3 H01 kVA L3 PF L1 H01 Power factor L1 PF L2 H01 Power factor L2 PF L3 H01 Power factor L3 HRM TOT POW Fundamental Total Power Values kW H01 Total fundamental kvar kVA H01 Total fundamental kvar kVA H01 Total fundamental FF FLICKER Flicker 1 V1 short-term	-	
V3 H01 V3/V31 Voltage 1 11 H01 1 Current 12 H01 2 Current 13 H01 3 Current kW L1 H01 kW L1 kW L2 H01 kW L2 kW L3 H01 kW L2 kwar L1 H01 kW L3 kvar L2 H01 kvar L2 kvar L4 H01 kvar L2 kvar L4 H01 kvar L3 kvar L4 H01 kvar L3 kvar L4 H01 kvar L4 kvar L4 H01 kvar L4 kvar L4 kvar L3 kvar L4 kvar L4 kv4 KVA L4		
11 H01 11 Current 12 H01 12 Current 13 H01 13 Current kW L1 H01 kW L1 kW L2 H01 kW L2 kW L3 H01 kW L2 kvar L1 H01 kwar L1 kvar L2 H01 kvar L2 kvar L3 H01 kvar L2 kvar L4 H01 kvar L2 kvar L2 H01 kvar L3 kVA L1 H01 kVA L1 kVA L2 H01 kVA L2 kVA L3 H01 kVA L3 PF L1 H01 Power factor L1 PF L2 H01 Power factor L2 PF L3 H01 Power factor L3 HRM TOT POW Fundamental Total Power Values kWar H01 Total fundamental kvar kVA H01 Total fundamental kvar kVA H01 Total fundamental kVA PF H01 Total fundamental PF FLICKER Flicker 1 V1 Pst V1 short-term (10 min) flicker severity V2 Pst V2 short-term (10 min) flicker severity		
11 H01 1 Current 12 H01 12 Current 13 H01 3 Current kW L1 H01 kW L1 kW L2 H01 kW L2 kW L3 H01 kW L3 kvar L1 H01 kW L3 kvar L2 H01 kvar L1 kvar L3 H01 kvar L2 kvar L4 H01 kvar L2 kvar L3 H01 kvar L3 kVA L1 H01 kVA L1 kVA L2 H01 kVA L2 kVA L2 H01 kVA L2 kVA L3 H01 kVA L3 PF L1 H01 Power factor L1 PF L2 H01 Power factor L2 PF L3 H01 Power factor L3 HRM TOT POW Fundamental Total Power Values kW H01 Total fundamental kvar kVA H01 Total fundamental kvar kVA H01 Total fundamental kVA PF H01 Total fundamental kVA PF H01 Total fundamental kVA PF H01 Total fundamental kVA V1 Pst V1 short-term (10 min) flicker severity V2 Pst V2 short-term (10 min) flicker severity	V3 H01	V3/V31 Voltage ¹
12 H01 12 Current 13 H01 13 Current kW L1 H01 kW L1 kW L2 H01 kW L2 kW L3 H01 kW L3 kvar L1 H01 kvar L1 kvar L4 H01 kvar L1 kvar L4 H01 kvar L2 kvar L4 H01 kvar L2 kvar L3 H01 kvar L3 kVA L1 H01 kVA L1 kVA L2 H01 kVA L2 kVA L3 H01 kVA L2 kVA L3 H01 kVA L2 kVA L3 H01 kVA L3 PF L1 H01 Power factor L1 PF L2 H01 Power factor L2 PF L3 H01 Power factor L3 HRM TOT POW Fundamental Total Power Values kW H01 Total fundamental kW kvar H01 Total fundamental kVA kVA H01 Total fundamental kVA PF H01 Total fundamental kVA PF H01 Total fundamental kVA PF H01 Total fundamental kVA V1 Pst V1 short-term (10 min) flicker severity V2 Pst V2 short-term (10 min) flicker severity	I1 H01	
I3 H01I3 CurrentkW L1 H01kW L1kW L2 H01kW L2kW L3 H01kW L3kvar L1 H01kvar L1kvar L2 H01kvar L2kvar L3 H01kvar L3kVA L1 H01kVA L1kVA L2 H01kVA L2kVA L3 H01kVA L3FL1 H01kVA L3PF L1 H01Power factor L1PF L2 H01Power factor L2PF L3 H01Power factor L3HRM TOT POWFundamental KWkvar H01Total fundamental kWkvar H01Total fundamental kVAPF H01Total fundamental PFFLICKERFlicker 1V1 PstV1 short-term (10 min) flicker severityV2 PstV2 short-term (10 min) flicker severity	I2 H01	
kW L1 H01kW L1kW L2 H01kW L2kW L3 H01kW L3kvar L1 H01kvar L1kvar L2 H01kvar L2kvar L3 H01kvar L3kVA L1 H01kVA L1kVA L2 H01kVA L2kVA L3 H01kVA L2kVA L3 H01kVA L3PF L1 H01Power factor L1PF L2 H01Power factor L2PF L3 H01Power factor L3HRM TOT POWFundamental Total Power ValueskW H01Total fundamental kWkvar H01Total fundamental kVAPF H01Total fundamental PFFLICKERFlicker 1V1 PstV1 short-term (10 min) flicker severityV2 PstV2 short-term (10 min) flicker severity	I3 H01	
kW L2 H01kW L2kW L3 H01kW L3kvar L1 H01kvar L1kvar L2 H01kvar L2kvar L3 H01kvar L3kVA L1 H01kVA L1kVA L2 H01kVA L2kVA L3 H01kVA L3PF L1 H01Power factor L1PF L2 H01Power factor L2PF L3 H01Power factor L3HRM TOT POWFundamental KWkvar H01Total fundamental kWkvar H01Total fundamental kVAPF H01Total fundamental PFFLICKERFlicker 1V1 PstV1 short-term (10 min) flicker severityV2 PstV2 short-term (10 min) flicker severity		
kW L3 H01kW L3kvar L1 H01kvar L1kvar L2 H01kvar L2kvar L3 H01kvar L3kVA L1 H01kVA L1kVA L2 H01kVA L2kVA L3 H01kVA L3PF L1 H01Power factor L1PF L2 H01Power factor L2PF L3 H01Power factor L3HRM TOT POWFundamental Total Power ValueskVA H01Total fundamental kVAPF H01Total fundamental kVAPF H01Total fundamental kVAV1 PstV1 short-term (10 min) flicker severityV2 PstV2 short-term (10 min) flicker severity		
kvar L1kvar L1kvar L2kvar L2kvar L3kvar L3kvar L3kvar L3kvar L4kvar L3kvar L4kvar L3kvar L4kvar L3kvar L4kvar L3kvar L4kvar L3kvar L4kvar L3kvar L4kvar L3kvar L3kvar L3kvar L4kvar L3kvar L4kvar L3kvar L5kvar L3PF L1H01Power factor L1PF L2H01Power factor L2PF L3H01Power factor L3HRM TOT POWFundamental Total Power ValueskW H01Total fundamental kWkvar H01Total fundamental kvarkvA H01Total fundamental kVAPF H01Total fundamental PFFLICKERFlicker 1V1 PstV1 short-term (10 min) flicker severityV2 PstV2 short-term (10 min) flicker severity		
kvar L2 H01kvar L2kvar L3 H01kvar L3kVA L1 H01kVA L1kVA L2 H01kVA L2kVA L3 H01kVA L3PF L1 H01Power factor L1PF L2 H01Power factor L2PF L3 H01Power factor L3HRM TOT POWFundamental Total Power ValueskVA H01Total fundamental kWkvar H01Total fundamental kVAPF H01Total fundamental kVAPF H01Total fundamental kVAV1 PstV1 short-term (10 min) flicker severityV2 PstV2 short-term (10 min) flicker severity		
kvar L3 H01kvar L3kVA L1 H01kVA L1kVA L2 H01kVA L2kVA L3 H01kVA L3PF L1 H01Power factor L1PF L2 H01Power factor L2PF L3 H01Power factor L3HRM TOT POWFundamental Total Power ValueskW H01Total fundamental kWkvar H01Total fundamental kVarFLCKERFlicker 1V1 PstV1 short-term (10 min) flicker severityV2 PstV2 short-term (10 min) flicker severity		
kVA L1kVA L1kVA L2 H01kVA L2kVA L3 H01kVA L3PF L1 H01Power factor L1PF L2 H01Power factor L2PF L3 H01Power factor L3HRM TOT POWFundamental Total Power ValueskW H01Total fundamental kWkvar H01Total fundamental kVarkVA H01Total fundamental kVarkVA H01Total fundamental kVAPF H01Total fundamental kVAV1 PstV1 short-term (10 min) flicker severityV2 PstV2 short-term (10 min) flicker severity		
kVA L2kVA L2kVA L3 H01kVA L3PF L1 H01Power factor L1PF L2 H01Power factor L2PF L3 H01Power factor L3HRM TOT POWFundamental Total Power ValueskW H01Total fundamental kWkvar H01Total fundamental kvarkVA H01Total fundamental kVAPF H01Total fundamental PFFLICKERFlicker 1V1 PstV1 short-term (10 min) flicker severityV2 PstV2 short-term (10 min) flicker severity		
kVA L3kVA L3PF L1 H01Power factor L1PF L2 H01Power factor L2PF L3 H01Power factor L3HRM TOT POWFundamental Total Power ValueskW H01Total fundamental kWkvar H01Total fundamental kvarkVA H01Total fundamental kVAPF H01Total fundamental PFFLICKERFlicker 1V1 PstV1 short-term (10 min) flicker severityV2 PstV2 short-term (10 min) flicker severity		
PF L1 H01Power factor L1PF L2 H01Power factor L2PF L3 H01Power factor L3HRM TOT POWFundamental Total Power ValueskW H01Total fundamental kWkvar H01Total fundamental kvarkVA H01Total fundamental kVAPF H01Total fundamental PFFLICKERFlicker 1V1 PstV1 short-term (10 min) flicker severityV2 PstV2 short-term (10 min) flicker severity		
PF L2 H01Power factor L2PF L3 H01Power factor L3HRM TOT POWFundamental Total Power ValueskW H01Total fundamental kWkvar H01Total fundamental kvarkVA H01Total fundamental kVAPF H01Total fundamental PFFLICKERFlicker 1V1 PstV1 short-term (10 min) flicker severityV2 PstV2 short-term (10 min) flicker severity		
PF L3 H01Power factor L3HRM TOT POWFundamental Total Power ValueskW H01Total fundamental kWkvar H01Total fundamental kvarkVA H01Total fundamental kVAPF H01Total fundamental PFFLICKERFlicker 1V1 PstV1 short-term (10 min) flicker severityV2 PstV2 short-term (10 min) flicker severity	1	
HRM TOT POWFundamental Total Power ValueskW H01Total fundamental kWkvar H01Total fundamental kvarkVA H01Total fundamental kVAPF H01Total fundamental PFFLICKERFlicker 1V1 PstV1 short-term (10 min) flicker severityV2 PstV2 short-term (10 min) flicker severity		
kW H01 Total fundamental kW kvar H01 Total fundamental kvar kVA H01 Total fundamental kVA PF H01 Total fundamental PF FLICKER Flicker 1 V1 Pst V1 short-term (10 min) flicker severity V2 Pst V2 short-term (10 min) flicker severity		
kvar H01 Total fundamental kvar kVA H01 Total fundamental kVA PF H01 Total fundamental PF FLICKER Flicker 1 V1 Pst V1 short-term (10 min) flicker severity V2 Pst V2 short-term (10 min) flicker severity		
kVA H01 Total fundamental kVA PF H01 Total fundamental PF FLICKER Flicker 1 V1 Pst V1 short-term (10 min) flicker severity V2 Pst V2 short-term (10 min) flicker severity		
PF H01 Total fundamental PF FLICKER Flicker 1 V1 Pst V1 short-term (10 min) flicker severity V2 Pst V2 short-term (10 min) flicker severity		
FLICKER Flicker 1 V1 Pst V1 short-term (10 min) flicker severity V2 Pst V2 short-term (10 min) flicker severity		
V1 Pst V1 short-term (10 min) flicker severity V2 Pst V2 short-term (10 min) flicker severity		
V2 Pst V2 short-term (10 min) flicker severity		
v3 Pst V3 snort-term (10 min) flicker severity		
	V3 PSt	v3 snort-term (10 min) flicker severity

Designation	Description
Designation V1 Plt	Description V1 long-term (2 hours) flicker severity
V1 Plt V2 Plt	V2 long-term (2 hours) flicker severity
V3 Plt	V3 long-term (2 hours) flicker severity
MIN PHASE	Minimum 1-Cycle Phase Values
V1 MIN	V1 voltage
V2 MIN	V1 voltage
V3 MIN	
	V3 voltage
I1 MIN	11 current
I2 MIN	2 current
I3 MIN kW L1 MIN	3 current
	kW L1
kW L2 MIN	kW L2
kW L3 MIN	kW L3
kvar L1 MIN	kvar L1
kvar L2 MIN	kvar L2
kvar L3 MIN	kvar L3
kVA L1 MIN	kVA L1
kVA L2 MIN	kVA L2
kVA L3 MIN	kVA L3
PF L1 MIN	Power factor L1
PF L2 MIN	Power factor L2
PF L3 MIN	Power factor L3
V1 THD MIN	V1 voltage THD
V2 THD MIN	V2 voltage THD
V3 THD MIN	V3 voltage THD
I1 THD MIN	1 current THD
I2 THD MIN	2 current THD
I3 THD MIN	3 current THD
I1 KF MIN	1 K-Factor
I2 KF MIN	2 K-Factor
I3 KF MIN	3 K-Factor
11 TDD MIN	1 current TDD
12 TDD MIN	2 current TDD
I3 TDD MIN	3 current TDD
V12 MIN	V12 voltage
V23 MIN	V23 voltage
V31 MIN	V31 voltage
1x MIN	1x current
2x MIN	2x current
I3x MIN	3x current
MIN TOTAL	Minimum 1-Cycle Total Values
kW MIN	Total kW
kvar MIN	Total kvar
kVA MIN	Total kVA
PF MIN	Total PF
	Total PF
PF LAG MIN PF LEAD MIN	Total PF lag
	Minimum 1-Cycle Auxiliary Values
I4 MIN	4 current
In MIN	In current
	Frequency
	Voltage unbalance
I UNB% MIN	Current unbalance
VDC MIN	DC voltage
V4 MIN	V4 voltage
I4x MIN	4x current
V4 THD MIN	V4 THD
I4 THD MIN	I4 THD
I4 TDD MIN	4 TDD
MIN PRG	Programmable Min/Max Minimum Registers
PROG REG1 MIN	Min/Max Register #1
PROG REG1 MIN	Min/Max Register #2
PROG REG16 MIN	Min/Max Register #16
MAX PHASE	Maximum 1-Cycle Phase Values
V1 MAX	V1 voltage
V2 MAX	V2 voltage
V3 MAX	V3 voltage

Designation	Description
Designation	Description
1 MAX 12 MAX	1 current 2 current
I3 MAX	3 current
kW L1 MAX	kW L1
kW L2 MAX	kW L2
kW L3 MAX	kW L3
kvar L1 MAX	kvar L1
kvar L2 MAX	kvar L2
kvar L3 MAX	kvar L3
kVA L1 MAX	kVA L1
kVA L2 MAX	kVA L2
kVA L3 MAX	kVA L3
PF L1 MAX	Power factor L1
PF L2 MAX	Power factor L2
PF L3 MAX	Power factor L3
V1 THD MAX	V1 voltage THD
V2 THD MAX	V2 voltage THD
V3 THD MAX	V3 voltage THD
I1 THD MAX	1 current THD
2 THD MAX	2 current THD
I3 THD MAX I1 KF MAX	I3 current THD
11 KF MAX 12 KF MAX	I1 K-Factor I2 K-Factor
I3 KF MAX	I3 K-Factor
13 KF MAX	13 K-Factor
12 TDD MAX	2 current TDD
I3 TDD MAX	I3 current TDD
V12 MAX	V12 voltage
V23 MAX	V23 voltage
V31 MAX	V31 voltage
I1x MAX	I1x current
I2x MAX	I2x current
I3x MAX	I3x current
MAX TOTAL	Maximum 1-Cycle Total Values
kW MAX	Total kW
kvar MAX	Total kvar
kVA MAX	Total kVA
PF MAX	Total PF
PF LAG MAX	Total PF lag
PF LEAD MAX	Total PF lead
MAX AUX	Maximum 1-Cycle Auxiliary Values
I4 MAX	4 current
In MAX	In current
	Frequency
V UNB% MAX I UNB% MAX	Voltage unbalance Current unbalance
VDC MAX V4 MAX	DC voltage V4 voltage
4 MAX	4 voltage
	V4 THD
4 THD MAX	4 THD
4 TDD MAX	4 TDD
MAX DMD	Maximum Demands
V1 DMD MAX	V1/V12 Maximum volt demand ¹
V2 DMD MAX	V2/V23 Maximum volt demand ¹
V3 DMD MAX	
-	V3/V31 Maximum volt demand ¹
1 DMD MAX 2 DMD MAX	1 Maximum ampere demand
IZ DMD MAX I3 DMD MAX	2 Maximum ampere demand
KW IMP SD MAX	I3 Maximum ampere demand Maximum kW import sliding window demand
kvar IMP SD MAX	Maximum kvv import sliding window demand Maximum kvar import sliding window demand
kVA IMP SD MAX	Maximum kVA sliding window demand
kvar IMP SD MAX	Maximum KVA siding window demand Maximum kW export sliding window demand
kvar EXP SD MAX	Maximum kvar export sliding window demand
V4 DMD MAX	V4 Maximum volt demand
4 DMD MAX	4 Maximum ampere demand
In DMD MAX	In Maximum ampere demand
MAX HRM DMD	Maximum Harmonic Demands
	•

Decimation	Description
Designation V1 THD DMD MAX	Description
	V1/V12 THD demand ¹
V2 THD DMD MAX	V2/V23 THD demand ¹
V3 THD DMD MAX	V3/V31 THD demand ¹
V4 THD DMD MAX	V4 THD demand
11 THD DMD MAX	1 THD demand
12 THD DMD MAX	2 THD demand
I3 THD DMD MAX	3 THD demand
I4 THD DMD MAX	4 THD demand
	1 TDD demand
2 TDD DMD MAX	3 TDD demand
	4 TDD demand
	Maximum Summary (TOU Total) Demands
SUM REG1 DMD MAX	Summary register #1 maximum demand
SUM REG2 DMD MAX	Summary register #2 maximum demand
SUM REG16 DMD MAX	Summary register #16 maximum demand
MAX PRG	Programmable Min/Max Maximum Registers
PROG REG1 MAX	Min/Max Register #1
PROG REG1 MAX	Min/Max Register #2
PROG REG16 MAX	Min/Max Register #16
ANALOG INPUTS	Scaled Analog Inputs (Engineering Units)
Al1	Analog input Al1
AI2	Analog input Al2
AI16	Analog input AI16
AI RAW	Raw Analog Inputs (A/D Units)
AI1 RAW	Analog input Al1
AI2 RAW	Analog input Al2
AI16 RAW	Analog input AI16
AO RAW	Raw Analog Outputs (A/D Units)
AO1	Analog output AO1
AO2	Analog output AO2
AO16	Analog output AO16
TOU PRMS	TOU Parameters
ACTIVE TARIFF	Active TOU tariff
ACTIVE PROFILE	Active TOU profile
TOU REG1	TOU Energy Register #1
TOU REG1 TRF1	Tariff #1 register
TOU REG1 TRF2	Tariff #2 register
TOU REG1 TRF16	Tariff #16 register
TOU REG2	TOU Energy Register #2
TOU REG2 TRF1	Tariff #1 register
TOU REG2 TRF2	Tariff #2 register
	 Tariff #16 register
TOU REG2 TRF16 TOU REG3	Tariff #16 register
TOU REG3	TOU Energy Register #3
TOU REG3 TRF2	Tariff #1 register Tariff #2 register
	1 ann #2 10910101
 TOU REG3 TRF16	Tariff #16 register
TOU REG4	TOU Energy Register #4
TOU REG4 TRF1	Tariff #1 register
TOU REG4 TRF2	Tariff #2 register
TOU REG4 TRF16	Tariff #16 register
TOU REG5	TOU Energy Register #5
TOU REG5 TRF1	Tariff #1 register
TOU REG5 TRF2	Tariff #2 register
TOU REG5 TRF16	Tariff #16 register
TOU REG6	TOU Energy Register #6
TOU REG6 TRF1	Tariff #1 register
TOU REG6 TRF2	Tariff #2 register
	· · ·

Designation	Description
Designation	
TOU REG6 TRF16	Tariff #16 register
TOU REG7	TOU Energy Register #7
TOU REG7 TRF1	Tariff #1 register
TOU REG7 TRF2	Tariff #2 register
TOU REG7 TRF16	Tariff #16 register
TOU REG8	TOU Energy Register #8
TOU REG8 TRF1	Tariff #1 register
TOU REG8 TRF2	Tariff #2 register
TOU REG8 TRF16	Tariff #16 register
TOU REG9	TOU Energy Register #9
TOU REG9 TRF1	Tariff #1 register
TOU REG9 TRF2	Tariff #2 register
TOU REG9 TRF16	Tariff #16 register
TOU REG10	TOU Energy Register #10
TOU REG10 TRF1	Tariff #1 register
TOU REG10 TRF2	Tariff #2 register
TOU REG10 TRF16	Tariff #16 register
TOU REG11	TOU Energy Register #11
TOU REG11 TRF1	Tariff #1 register
TOU REG11 TRF2	Tariff #2 register
TOU REG11 TRF16	Tariff #16 register
TOU REG12	TOU Energy Register #12
TOU REG12 TRF1	Tariff #1 register
TOU REG12 TRF2	Tariff #2 register
	···
TOU REG12 TRF16	Tariff #16 register
TOU REG13	TOU Energy Register #13
TOU REG13 TRF1 TOU REG13 TRF2	Tariff #1 register
IOU REGIS IRF2	Tariff #2 register
 TOU REG13 TRF16	Tariff #16 register
TOU REG14	TOU Energy Register #14
TOU REG14 TRF1	Tariff #1 register
TOU REG14 TRF1	Tariff #2 register
TOU REG14 TRF16	Tariff #16 register
TOU REG15	TOU Energy Register #15
TOU REG15 TRF1	Tariff #1 register
TOU REG15 TRF2	Tariff #2 register
TOU REG15 TRF16	Tariff #16 register
TOU REG16	TOU Energy Register #16
TOU REG16 TRF1	Tariff #1 register
TOU REG16 TRF2	Tariff #2 register
	···· · · · · · · · · · · · · · · · · ·
TOU REG16 TRF16	Tariff #16 register
TOU MAX DMD REG1	TOU Maximum Demand Register #1
DMD1 TRF1 MAX	Tariff #1 register
DMD1 TRF2 MAX	Tariff #2 register
DMD1 TRF16 MAX	Tariff #16 register
TOU MAX DMD REG2	TOU Maximum Demand Register #2
DMD2 TRF1 MAX	Tariff #1 register
DMD2 TRF2 MAX	Tariff #2 register
DMD2 TRF16 MAX	Tariff #16 register
TOU MAX DMD REG3	TOU Maximum Demand Register #3
DMD3 TRF1 MAX	Tariff #1 register
DMD3 TRF2 MAX	Tariff #2 register
DMD3 TRF16 MAX TOU MAX DMD REG4	Tariff #16 register TOU Maximum Demand Register #4

Designation	Deservition
Designation	Description
DMD4 TRF1 MAX	Tariff #1 register
DMD4 TRF2 MAX	Tariff #2 register
DMD4 TRF16 MAX	Tariff #16 register
TOU MAX DMD REG5	TOU Maximum Demand Register #5
DMD5 TRF1 MAX	Tariff #1 register
DMD5 TRF2 MAX	Tariff #2 register
DMD5 TRF16 MAX	Tariff #16 register
TOU MAX DMD REG6	TOU Maximum Demand Register #6
DMD6 TRF1 MAX	Tariff #1 register
DMD6 TRF2 MAX	Tariff #2 register
DMD6 TRF16 MAX	Tariff #16 register
TOU MAX DMD REG7	TOU Maximum Demand Register #7
DMD7 TRF1 MAX	Tariff #1 register
DMD7 TRF2 MAX	Tariff #2 register
DMD7 TRF16 MAX	Tariff #16 register
TOU MAX DMD REG8	TOU Maximum Demand Register #8
DMD8 TRF1 MAX	Tariff #1 register
DMD8 TRF2 MAX	Tariff #2 register
DMD8 TRF16 MAX	Tariff #16 register
TOU MAX DMD REG9	TOU Maximum Demand Register #9
DMD9 TRF1 MAX	Tariff #1 register
DMD9 TRF2 MAX	Tariff #2 register
DMD9 TRF16 MAX	Tariff #16 register
TOU MAX DMD REG10	TOU Maximum Demand Register #10
DMD10 TRF1 MAX	Tariff #1 register
DMD10 TRF2 MAX	Tariff #2 register
DMD10 TRF16 MAX	Tariff #16 register
TOU MAX DMD REG11	TOU Maximum Demand Register #11
DMD11 TRF1 MAX	Tariff #1 register
DMD11 TRF2 MAX	Tariff #2 register
DMD11 TRF16 MAX	Tariff #16 register
TOU MAX DMD REG12	TOU Maximum Demand Register #12
DMD12 TRF1 MAX	Tariff #1 register
DMD12 TRF2 MAX	Tariff #2 register
DMD12 TRF16 MAX	Tariff #16 register
TOU MAX DMD REG13	TOU Maximum Demand Register #13
DMD13 TRF1 MAX	Tariff #1 register
DMD13 TRF2 MAX	Tariff #2 register
DMD13 TRF16 MAX	Tariff #16 register
TOU MAX DMD REG14	TOU Maximum Demand Register #14
DMD14 TRF1 MAX	Tariff #1 register
DMD14 TRF2 MAX	Tariff #2 register
DMD14 TRF16 MAX	Tariff #16 register
TOU MAX DMD REG15	TOU Maximum Demand Register #15
DMD15 TRF1 MAX	Tariff #1 register
DMD15 TRF2 MAX	Tariff #2 register
DMD15 TRF16 MAX	Tariff #16 register
TOU MAX DMD REG16	TOU Maximum Demand Register #16
DMD16 TRF1 MAX	Tariff #1 register
DMD16 TRF2 MAX	Tariff #2 register
	 Toriff #16 register
DMD16 TRF16 MAX	Tariff #16 register

¹ In 4LN3, 3LN3 and 3BLN3 wiring modes, the voltages are line-to-neutral; for any other wiring mode, they will be line-to-line.

Appendix D EN50160 Statistics Log Files

The following table lists the EN50160 evaluation parameters recorded by the device in the EN50160 statistics data log files. The second column shows data abbreviations used in the PAS data log reports. Data log file sections are highlighted in bold.

EN50160 Compliance Statistics Log (Data Log #9)

Field No.	Docignation	Description
Field NO.	Designation	
1	N 1	Power Frequency
1	Nnv	Number of non-valid 10-sec intervals
2	N	Number of valid 10-sec intervals
2 3 4 5 6 7	N1	Number of incidents ±1%, N1
4	N2	Number of incidents +4%/-6%, N2
5	N1/N, %	EN50160 compliance ratio, N1/N
6	N2/N, %	EN50160 compliance ratio, N2/N
	Freq Min	Minimum frequency
8	Freq Max	Maximum frequency
		Supply Voltage Variations
1	Nnv	Number of non-valid 10-min intervals
2	N	Number of valid 10-min intervals
2 3 4 5 6 7	N1	Number of polyphase incidents ±10%, N1
4	N2	Number of polyphase incidents +10/-15%, N2
5	N1/N, %	EN50160 compliance ratio, N1/N
5	N2/N, %	EN50160 compliance ratio, N2/N
7	V1 N1	Number of incidents ±10% on phase V1
/ 0	V1 Min	Minimum voltage on phase V1
8 9 10	V1 Max	
8		Maximum voltage on phase V1
10	V2 N1	Number of incidents ±10% on phase V2
11	V2 Min	Minimum voltage on phase V2
12	V2 Max	Maximum voltage on phase V2
13	V3 N1	Number of incidents ±10% on phase V3
14	V3 Min	Minimum voltage on phase V3
15	V3 Max	Maximum voltage on phase V3
		Rapid Voltage Changes
1	N1	Number of polyphase incidents
2	V1 N1	Number of incidents on phase V1
2 3 4 5 6 7	V1 dV%	Maximum voltage variation on phase V1, dV/Un%
4	V2 N1	Number of incidents on phase V2
5	V2 dV%	Maximum voltage variation on phase V2, dV/Un%
6	V3 N1	Number of incidents on phase V3
7	V3 dV%	Maximum voltage variation on phase V3, dV/Un%
		Flicker
1	Nnv	Number of non-valid 10-min intervals
	N	Number of valid 10-min intervals
2 3 4 5 6 7	N1	Number of polyphase incidents Plt >1%, N1
4	N1/N, %	EN50160 compliance ratio, N1/N
5	V1 N1	Number of incidents Plt > 1% on phase V1
6	V1 Plt Max	Maximum Plt on phase V2
7	V2 N1	Number of incidents Plt > 1% on phase V2
8	V2 Plt Max	Maximum Plt on phase V2
8 9	V3 N1	Number of incidents Plt > 1% on phase V3
5 10	V3 Plt Max	Maximum Plt on phase V3
10		
1	N111 009/ /100m-	Voltage Dips (indicative statistics)
1	N11 90%/100ms	Number of polyphase incidents u<90%/t<100ms
2	N12 85%/100ms	Number of polyphase incidents u<85%/t<100ms
3	N13 70%/100ms	Number of polyphase incidents u<70%/t<100ms
4	N14 40%/100ms	Number of polyphase incidents u<40%/t<100ms
þ	N11 90%/500ms	Number of polyphase incidents u<90%/t<500ms
2 3 4 5 6 7 8 9	N12 85%/500ms	Number of polyphase incidents u<85%/t<500ms
/	N13 70%/500ms	Number of polyphase incidents u<70%/t<500ms
8	N14 40%/500ms	Number of polyphase incidents u<40%/t<500ms
9	N11 90%/1s	Number of polyphase incidents u<90%/t<1s
10	N12 85%/1s	Number of polyphase incidents u<85%/t<1s
11	N13 70%/1s	Number of polyphase incidents u<70%/t<1s
12	N14 40%/1s	Number of polyphase incidents u<40%/t<1s
13	N11 90%/3s	Number of polyphase incidents u<90%/t<3s
14	N12 85%/3s	Number of polyphase incidents u<85%/t<3s
		· · · ·

15 N13.70%/35 Number of polyphase incidents u=070%/rc3s 17 N11.90%/20s Number of polyphase incidents u=070%/rc3s 18 N12.85%/20s Number of polyphase incidents u=070%/rc3s 19 N13.70%/20s Number of polyphase incidents u=070%/rc3s 20 N14.40%/20s Number of polyphase incidents u=070%/rc3s 21 N11.90%/60s Number of polyphase incidents u=070%/rc4s 22 N11.90%/60s Number of polyphase incidents u=070%/rc4s 23 N13.70%/60s Number of polyphase incidents u=070%/rc4s 24 N14.40%/60s Number of polyphase incidents u=070%/rc4s 25 N11.90%/10s Number of polyphase incidents u=070%/rc4s 26 N12.85%/r180s Number of polyphase incidents u=070%/rc180s 27 N14 N14 N14 30 Y14 N14 N14 31 Y14 N14 N14 32 Y2 N14 N14 33 Y3 N1 Total number of polyphase incidents u=070%/rc180s 34 Y3 N1 Total numb		b	
16 N14 40%/30 Number of polyphase incidents u-40%/k-20s 17 N11 90%/20s Number of polyphase incidents u-40%/k-20s 18 N12 85%/20s Number of polyphase incidents u-40%/k-20s 20 N14 40%/20s Number of polyphase incidents u-40%/k-20s 21 N11 90%/60s Number of polyphase incidents u-40%/k-20s 22 N12 85%/60s Number of polyphase incidents u-40%/k-60s 23 N13 70%/10s Number of polyphase incidents u-40%/k-60s 24 N14 40%/60s Number of polyphase incidents u-40%/k-60s 25 N13 60%/10s Number of polyphase incidents u-40%/k-60s 26 N14 40%/10s Number of polyphase incidents u-40%/k-10s 27 N13 70%/10s Number of polyphase incidents u-40%/k-10s 28 N14 40%/10s Number of polyphase incidents u-40%/k-10s 29 V1 N1 Total number of incidents on phase V1 30 V1 Nin Minimum residual voltage on phase V2 31 V2 N1 Total number of polyphase incidents to 150% 31 V3 Nin Minimum residual voltage on phase V3 31 V3 Nin Minimum residual voltage on phase V3 31<	Field No.		
17 N11 90%/206 Number of polyphase incidents u-69%/L-205 18 N12 85%/206 Number of polyphase incidents u-69%/L-205 19 N13 70%/206 Number of polyphase incidents u-69%/L-205 20 N14 40%/205 Number of polyphase incidents u-69%/L-605 21 N11 90%/605 Number of polyphase incidents u-69%/L-605 22 N13 70%/605 Number of polyphase incidents u-69%/L-605 23 N13 70%/605 Number of polyphase incidents u-69%/L-605 24 N14 40%/105 Number of polyphase incidents u-69%/L-1805 25 N11 90%/1605 Number of polyphase incidents u-69%/L-1805 26 N14 40%/1805 Number of polyphase incidents u-69%/L-1805 27 N13 70%/1805 Number of polyphase incidents u-69%/L-1805 28 V1 14 Total number of incidents on phase V1 30 V1 Min Minimum residual voltage on phase V2 31 V2 N1 Total number of polyphase incidents t-1805 31 N1 15 Number of polyphase incidents t-1805 31 V1 Min Minimum residual voltage on phase V3 4 V3 Min Minimum residual voltage on phase V3 5			
 N12 85%/1-20s Number of polyphase incidents u-45%/1-20s N14 40%/20s Number of polyphase incidents u-40%/1-20s N11 90%/60s Number of polyphase incidents u-45%/1-60s N13 70%/60s Number of polyphase incidents u-45%/1-60s N13 70%/60s Number of polyphase incidents u-45%/1-60s N14 90%/7180s Number of polyphase incidents u-45%/1-60s N14 90%/7180s Number of polyphase incidents u-45%/1-60s N15 70%/708 Number of polyphase incidents u-45%/1-60s N14 90%/7180s Number of polyphase incidents u-45%/1-60s V1 N1 Total number of incidents on phase V1 V2 N1 Total number of incidents on phase V2 V3 N1 Total number of incidents on phase V2 V3 N1 Total number of polyphase incidents t-180s V3 Min Minimum residual voltage on phase V3 V3 Min Number of polyphase incidents t-180s N3 >180s Number of polyphase incidents t-180s V1 N1 S N2 Min Minimum residual voltage on phase V3 V2 Min Minimum residual voltage on phase V3 V1 Min Minimum residual voltage on phase V3 V2 Min Minimum residual voltage on phase V3 V2 Min Minimum residual voltage on phase V4 V2 Min Minimum residual voltage on phase V3 V2 Min Minimum residual voltage on phase V3 V2 Min Minimum residual voltage on phase V4 V3 Min Minimum residual voltage on phase V3 V2 Min Minimum residual voltage on phase V4 V3 Min Minimum residual voltage on phase V3 V2 Min Min			
 19 N13 70%/20s Number of polyphase incidents u-40%/k-20s 20 N14 40%/20s Number of polyphase incidents u-40%/k-20s 21 N1 190%/60s Number of polyphase incidents u-40%/k-60s 22 N13 70%/60s Number of polyphase incidents u-40%/k-60s 23 N13 70%/60s Number of polyphase incidents u-40%/k-60s 24 N14 40%/60s Number of polyphase incidents u-40%/k-60s 25 N11 90%/180S Number of polyphase incidents u-40%/k-60s 26 N17 26%/180S Number of polyphase incidents u-40%/k-60s 27 N13 70%/10S Number of polyphase incidents u-40%/k-180s 28 N14 40%/180S Number of polyphase incidents u-40%/k-180s 28 V1 N1 Total number of incidents on phase V1 29 V1 N1 Total number of incidents on phase V1 20 V2 N1 Total number of incidents on phase V2 21 V2 N1 Total number of incidents on phase V3 24 V3 N1 Total number of incidents on phase V3 24 V3 N1 Total number of incidents on phase V3 24 V3 N1 Total number of polyphase incidents t-13 24 V3 N1 Min Minimum residual voltage on phase V3 24 V3 N1 Number of polyphase incidents t-180s 24 V3 N1 Min Minimum residual voltage on phase V3 25 V1 Min Minimum residual voltage on phase V3 26 V3 Min Minimum residual voltage on phase V3 27 N1 N1 N1 Number of polyphase incidents t-180s 28 V3 Nin Minimum residual voltage on phase V3 29 V2 Min Minimum residual voltage on phase V4 20 V3 Min Minimum residual voltage on phase V2 21 V1 Min Minimum residual voltage on phase V3 21 110%/s1S Number of polyphase incidents us-10%/k-1s 21 120%/s1S Number of polyphase incidents us-10%/k-1s 20 V3 Min Minimum residual voltage on phase V4 31 N11 110%/s1S Number of polyphase incidents us-10%/k-1s 31 N13 110%/s60S Number of polyphase incidents us-10%/k-1s 31 N13 110%/s60S Number of polyphase incidents us-10%/k-1s 31 N13 110%/s60S Number o			
20 N14 40%/20s Number of polyphase incidents u=40%/h=20s 21 N11 90%/60s Number of polyphase incidents u=40%/h=60s 22 N12 85%/60s Number of polyphase incidents u=40%/h=60s 23 N13 70%/60s Number of polyphase incidents u=40%/h=60s 24 N14 40%/60s Number of polyphase incidents u=40%/h=60s 25 N11 90%/108 Number of polyphase incidents u=40%/h=60s 26 N12 65%/108 Number of polyphase incidents u=40%/h=60s 27 N13 70%/108 Number of polyphase incidents u=40%/h=10s 28 N14 40%/108 Number of polyphase incidents u=40%/h=10s 29 V1 Min Minimum residual voltage on phase V1 30 V1 Min Minimum residual voltage on phase V2 20 V2 Min Minimum residual voltage on phase V3 31 V3 Min Minimum residual voltage on phase V3 32 V2 Min Minimum residual voltage on phase V3 33 V3 Min Minimum residual voltage on phase V3 34 V1 Min Minimum residual voltage on phase V3 35 V2 Min Minimum residual voltage on phase V3 4 V1 Min <td< td=""><td></td><td></td><td></td></td<>			
 N13 70%/60s Number of polyphase incidents u-470%/k-60s N11 90%/180s Number of polyphase incidents u-450%/k-180s N13 70%/180s Number of polyphase incidents u-4570%/k-180s N14 40%/60s Number of polyphase incidents u-4570%/k-180s N14 40%/180s Number of polyphase incidents u-4570%/k-180s N14 40%/180s Number of polyphase incidents u-4570%/k-180s N14 40%/180s Number of polyphase incidents u-4570%/k-180s V1 N1 Total number of incidents on phase V1 V2 N1 Total number of incidents on phase V2 V2 N1 Total number of incidents on phase V2 V2 M1 Total number of incidents on phase V3 V3 M1 Total number of incidents on phase V3 V3 M1 Total number of polyphase incidents t-t18s V3 N1 Number of polyphase incidents t-t18s N2 180s Number of polyphase incidents t-t18s N2 180s Number of polyphase incidents t-t18s V2 180s Number of polyphase incidents t-t18s V2 Win Minimum residual voltage on phase V1 M11 110%/T Number of polyphase incidents u-140%/k-1s N11 140%/Ts Number of polyphase incidents u-140%/k-1s N11 140%/Ts Number of polyphase incidents u-140%/k-1s N11 140%/Ts Number of polyphase incidents u-120%/k-60s N21 110%/K0S Number of polyphase incidents u-120%/k-60s N22 140%/K0S Number of po			
 N13 70%/60s Number of polyphase incidents u-470%/k-60s N11 90%/180s Number of polyphase incidents u-450%/k-180s N13 70%/180s Number of polyphase incidents u-4570%/k-180s N14 40%/60s Number of polyphase incidents u-4570%/k-180s N14 40%/180s Number of polyphase incidents u-4570%/k-180s N14 40%/180s Number of polyphase incidents u-4570%/k-180s N14 40%/180s Number of polyphase incidents u-4570%/k-180s V1 N1 Total number of incidents on phase V1 V2 N1 Total number of incidents on phase V2 V2 N1 Total number of incidents on phase V2 V2 M1 Total number of incidents on phase V3 V3 M1 Total number of incidents on phase V3 V3 M1 Total number of polyphase incidents t-t18s V3 N1 Number of polyphase incidents t-t18s N2 180s Number of polyphase incidents t-t18s N2 180s Number of polyphase incidents t-t18s V2 180s Number of polyphase incidents t-t18s V2 Win Minimum residual voltage on phase V1 M11 110%/T Number of polyphase incidents u-140%/k-1s N11 140%/Ts Number of polyphase incidents u-140%/k-1s N11 140%/Ts Number of polyphase incidents u-140%/k-1s N11 140%/Ts Number of polyphase incidents u-120%/k-60s N21 110%/K0S Number of polyphase incidents u-120%/k-60s N22 140%/K0S Number of po	20		
 N13 70%/60s Number of polyphase incidents u-470%/k-60s N11 90%/180s Number of polyphase incidents u-450%/k-180s N13 70%/180s Number of polyphase incidents u-4570%/k-180s N14 40%/60s Number of polyphase incidents u-4570%/k-180s N14 40%/180s Number of polyphase incidents u-4570%/k-180s N14 40%/180s Number of polyphase incidents u-4570%/k-180s N14 40%/180s Number of polyphase incidents u-4570%/k-180s V1 N1 Total number of incidents on phase V1 V2 N1 Total number of incidents on phase V2 V2 N1 Total number of incidents on phase V2 V2 M1 Total number of incidents on phase V3 V3 M1 Total number of incidents on phase V3 V3 M1 Total number of polyphase incidents t-t18s V3 N1 Number of polyphase incidents t-t18s N2 180s Number of polyphase incidents t-t18s N2 180s Number of polyphase incidents t-t18s V2 180s Number of polyphase incidents t-t18s V2 Win Minimum residual voltage on phase V1 M11 110%/T Number of polyphase incidents u-140%/k-1s N11 140%/Ts Number of polyphase incidents u-140%/k-1s N11 140%/Ts Number of polyphase incidents u-140%/k-1s N11 140%/Ts Number of polyphase incidents u-120%/k-60s N21 110%/K0S Number of polyphase incidents u-120%/k-60s N22 140%/K0S Number of po	21		
27 N13 70%/180s Number of polyphase incidents u-470%/k-180s 28 N14 40%/180s Number of polyphase incidents u-470%/k-180s 29 V1 N1 Total number of incidents on phase V1 30 V2 N1 Total number of incidents on phase V2 31 V2 N1 Total number of incidents on phase V2 32 V3 Min Minimum residual voltage on phase V3 34 V3 Min Minimum residual voltage on phase V3 34 V3 Min Minimum residual voltage on phase V3 34 V3 Min Minimum residual voltage on phase V3 36 N3 ×180s Number of polyphase incidents t-180s 34 V3 Min Minimum residual voltage on phase V2 36 V3 Min Minimum residual voltage on phase V2 37 V1 Min Minimum residual voltage on phase V2 38 V3 Min Minimum residual voltage on phase V2 38 V3 Min Minimum residual voltage on phase V2 38 V3 Min Minimum residual voltage on phase V2 39 N14 110%/r.1s Number of polyphase incidents u-10%/r.1s 39 N14 1110%/r.1s Number of polyphase incidents u-10%/r.1s<	22		
27 N13 70%/180s Number of polyphase incidents u-470%/k-180s 28 N14 40%/180s Number of polyphase incidents u-470%/k-180s 29 V1 N1 Total number of incidents on phase V1 30 V2 N1 Total number of incidents on phase V2 31 V2 N1 Total number of incidents on phase V2 32 V3 Min Minimum residual voltage on phase V3 34 V3 Min Minimum residual voltage on phase V3 34 V3 Min Minimum residual voltage on phase V3 34 V3 Min Minimum residual voltage on phase V3 36 N3 ×180s Number of polyphase incidents t-180s 34 V3 Min Minimum residual voltage on phase V2 36 V3 Min Minimum residual voltage on phase V2 37 V1 Min Minimum residual voltage on phase V2 38 V3 Min Minimum residual voltage on phase V2 38 V3 Min Minimum residual voltage on phase V2 38 V3 Min Minimum residual voltage on phase V2 39 N14 110%/r.1s Number of polyphase incidents u-10%/r.1s 39 N14 1110%/r.1s Number of polyphase incidents u-10%/r.1s<	23		
27 N13 70%/180s Number of polyphase incidents u-470%/k-180s 28 N14 40%/180s Number of polyphase incidents u-470%/k-180s 29 V1 N1 Total number of incidents on phase V1 30 V2 N1 Total number of incidents on phase V2 31 V2 N1 Total number of incidents on phase V2 32 V3 Min Minimum residual voltage on phase V3 34 V3 Min Minimum residual voltage on phase V3 34 V3 Min Minimum residual voltage on phase V3 34 V3 Min Minimum residual voltage on phase V3 36 N3 ×180s Number of polyphase incidents t-180s 34 V3 Min Minimum residual voltage on phase V2 36 V3 Min Minimum residual voltage on phase V2 37 V1 Min Minimum residual voltage on phase V2 38 V3 Min Minimum residual voltage on phase V2 38 V3 Min Minimum residual voltage on phase V2 38 V3 Min Minimum residual voltage on phase V2 39 N14 110%/r.1s Number of polyphase incidents u-10%/r.1s 39 N14 1110%/r.1s Number of polyphase incidents u-10%/r.1s<	24		
27 N13 70%/180s Number of polyphase incidents u-470%/k-180s 28 N14 40%/180s Number of polyphase incidents u-470%/k-180s 29 V1 N1 Total number of incidents on phase V1 30 V2 N1 Total number of incidents on phase V2 31 V2 N1 Total number of incidents on phase V2 32 V3 Min Minimum residual voltage on phase V3 34 V3 Min Minimum residual voltage on phase V3 34 V3 Min Minimum residual voltage on phase V3 34 V3 Min Minimum residual voltage on phase V3 36 N3 ×180s Number of polyphase incidents t-180s 34 V3 Min Minimum residual voltage on phase V2 36 V3 Min Minimum residual voltage on phase V2 37 V1 Min Minimum residual voltage on phase V2 38 V3 Min Minimum residual voltage on phase V2 38 V3 Min Minimum residual voltage on phase V2 38 V3 Min Minimum residual voltage on phase V2 39 N14 110%/r.1s Number of polyphase incidents u-10%/r.1s 39 N14 1110%/r.1s Number of polyphase incidents u-10%/r.1s<	20		
29 V1 Nin Total number of incidents on phase V1 30 V1 Min Minimum residual voltage on phase V2 31 V2 N1 Total number of incidents on phase V2 32 V3 N1 Total number of incidents on phase V3 34 V3 Min Minimum residual voltage on phase V3 34 V3 Min Minimum residual voltage on phase V3 34 V3 Min Number of polyphase incidents t<1s	20		
29 V1 Nin Total number of incidents on phase V1 30 V1 Min Minimum residual voltage on phase V2 31 V2 N1 Total number of incidents on phase V2 32 V3 N1 Total number of incidents on phase V3 34 V3 Min Minimum residual voltage on phase V3 34 V3 Min Minimum residual voltage on phase V3 34 V3 Min Number of polyphase incidents t<1s	27		
30 √1 Min Minimum residual voltage on phase V1 31 √2 N1 Total number of incidents on phase V2 32 √2 Min Minimum residual voltage on phase V3 33 √3 Min Minimum residual voltage on phase V3 34 √3 Min Minimum residual voltage on phase V3 1 N1 15 Number of polyphase incidents t<180s	20		
31 V2 NI Total number of incidents on phase V2 32 V2 Min Minimum residual voltage on phase V3 33 V3 NI Total number of incidents on phase V3 34 V3 Min Minimum residual voltage on phase V3 34 V3 Min Ninimum residual voltage on phase V3 34 N1 1s Number of polyphase incidents I<180s			
32 V2 Min Minimum residual voltage on phase V2 33 V3 Min Total number of incidents on phase V3 34 V3 Min Minimum residual voltage on phase V3 34 V3 Min Minimum residual voltage on phase V3 34 V3 Min Number of polyphase incidents t-1s 35 N3 >180s Number of polyphase incidents t-1s 36 V3 Min Minimum residual voltage on phase V1 36 V3 Min Minimum residual voltage on phase V2 36 V3 Min Minimum residual voltage on phase V3 37 Temporary Overvoltages (indicative statistics) 38 V1110%/1s Number of polyphase incidents u-10%/hc1s 38 N13 140%/1s Number of polyphase incidents u-120%/hc1s 38 N13 140%/1s Number of polyphase incidents u-120%/hc60s 39 N21 10%/f0S Number of polyphase incidents u-120%/hc60s 30 N21 40%/f0S Number of polyphase incidents u-120%/hc60s 30 N21 40%/f0S Number of polyphase incidents u-120%/hc60s 30 N22 120%/f0S Number of polyphase incidents u-120%/hc60s 3110%/s60s Number of polyphase incidents u-120%/hc60s	21		
 V3 N1 Total number of incidents on phase V3 V3 Min Minimum residual voltage on phase V3 Voltage Interruptions (indicative statistics) N1 1s Number of polyphase incidents I<18 X3 > 180s Number of polyphase incidents I<180s X3 > 180s Number of polyphase incidents I<180s V3 Min Minimum residual voltage on phase V1 V2 Min Minimum residual voltage on phase V2 V3 Min Minimum residual voltage on phase V3 Temporary Overvoltages (indicative statistics) N11 110%/1s Number of polyphase incidents L10%/L<1s N12 120%/1s Number of polyphase incidents u-110%/L<1s N13 140%/1 Number of polyphase incidents u-10%/L<1s N11 10%/G0S Number of polyphase incidents u-100%/L<1s N12 120%/1s Number of polyphase incidents u-100%/L<1s N12 10%/G0S Number of polyphase incidents u-100%/L<5s N15 200%/1 Number of polyphase incidents u-100%/L<50S N21 10%/G0S Number of polyphase incidents u-100%/L<50S N21 400%/G0S Number of polyphase incidents u-100%/L<50S N22 120%/G0S Number of polyphase incidents u-100%/L<50S N23 140%/C0S Number of polyphase incidents u-100%/L<50S N23 120%/C0S Number of polyphase incidents u-100%/L<50S N33 100%/-60S Number of polyphase incidents u-100%/L<50S N33 100%/-60S Number of polyphase incidents u-100%/L<50S N33 100%/-60S Number of polyphase incidents u-100%/L<50S N35 200%/L<50S Number of polyphase incidents u-100%/L<50S N35 200%/-60S Number of polyphase incidents u-100%/L<50S N35 200%/-60S Number of polyphase incidents u-100%/L<50S N35 200%/-60S Number of polyphase incidents u-100%/L<50S N35 200%/-60S Number of polyphase incidents u-100%/L<50S N35 200%/-60S Number of polyphase incidents u-100%/L<50S N35 200%/N0S<td>32</td><td></td><td></td>	32		
 Y3 Min Minimum residual voltage on phase V3 Voltage Interruptions (indicative statistics) N1 1s Number of polyphase incidents I<1s X1 1s Number of polyphase incidents I<180s N3 >180s Number of polyphase incidents I<180s N3 >180s Number of polyphase incidents I<180s V1 Min Minimum residual voltage on phase V1 V2 Min Minimum residual voltage on phase V2 V3 Min Minimum residual voltage on phase V3 Temporary Overvoltages (indicative statistics) N11 110%/1s Number of polyphase incidents u>10%/L<1s N11 10%/1s Number of polyphase incidents u>10%/L<1s N13 140%/1s Number of polyphase incidents u>100%/L<1s N14 160%/1s Number of polyphase incidents u>100%/L<1s N15 200%/1 Number of polyphase incidents u>100%/L<1s N15 200%/1 Number of polyphase incidents u>100%/L<1s N15 200%/1 Number of polyphase incidents u>100%/L<5s N15 200%/C0S Number of polyphase incidents u>100%/L<60s Number of polyphase incidents u>100%/L<50s Number of polyphase incidents u>100%/L<50s Number of polyphase incidents u>100%/L<60s Number of polyphase incidents u>100%/L<50s Number of polyphase incidents u>100%/L<50s Number of polyphase incidents u>100%/L<50s N31 140%/-50s Number of polyphase incidents u>100%/L<50s N32 120%/L<50s Number of polyphase incidents u>100%/L<50s N33 140%/-50s Number of polyphase incidents u>200%/L<50s N33 140%/-50s Number of polyphase incidents u>10%/L>50s N33 140%/L<50s Number of polyp			
Voltage Interruptions (indicative statistics) 1 N1 1s Number of polyphase incidents I<1s			
1 N1 1s Number of polyphase incidents t<1s	54		
2 N2 180s Number of polyphase incidents t-180s 3 N3 > 180s Number of polyphase incidents t-180s 4 V1 Min Minimum residual voltage on phase V1 5 V2 Min Minimum residual voltage on phase V3 6 V3 Min Minimum residual voltage on phase V3 1 N11 110%/1s Number of polyphase incidents u-110%/k-ts 2 N12 120%/k1s Number of polyphase incidents u-140%/k-ts 3 N13 140%/1s Number of polyphase incidents u-100%/k-ts 5 N15 200%/1s Number of polyphase incidents u-200%/k-ts 6 N21 110%/60s Number of polyphase incidents u-100%/k-ts 6 N21 10%/60s Number of polyphase incidents u-100%/k-ts 7 N22 120%/c60s Number of polyphase incidents u-100%/k-ts 8 N23 140%/c60s Number of polyphase incidents u-100%/k-ts 9 N24 160%/c60s Number of polyphase incidents u-100%/k-ts 10 N25 200%/c60s Number of polyphase incidents u-100%/k-ts 11 N31 110%/s-60s Number of polyphase incidents u-100%/k-ts 12 N32 100%/s-60s Number of polyphase incidents u-100%/k-ts 13	1	N1 1e	
Temporary Overvoltages (indicative statistics)1N11 110%/1sNumber of polyphase incidents u>110%/t<1s			
Temporary Overvoltages (indicative statistics)1N11 110%/1sNumber of polyphase incidents u>110%/t<1s	<u>×</u>		
Temporary Overvoltages (indicative statistics)1N11 110%/1sNumber of polyphase incidents u>110%/t<1s	5 4		
Temporary Overvoltages (indicative statistics)1N11 110%/1sNumber of polyphase incidents u>110%/t<1s	4 5		
Temporary Overvoltages (indicative statistics)1N11 110%/1sNumber of polyphase incidents u>110%/t<1s	5		
1 N11 110%/1s Number of polyphase incidents u>110%/t-1s 2 N12 120%/1s Number of polyphase incidents u>120%/t-1s 3 N13 140%/1s Number of polyphase incidents u>120%/t-1s 4 N14 160%/1s Number of polyphase incidents u>200%/t-1s 5 N15 200%/1s Number of polyphase incidents u>120%/t-60s 6 N21 110%/t60s Number of polyphase incidents u>120%/t-60s 7 N22 120%/60s Number of polyphase incidents u>120%/t-60s 8 N23 140%/t60s Number of polyphase incidents u>160%/t-60s 9 N24 160%/f0s Number of polyphase incidents u>120%/t-60s 10 N25 200%/t60s Number of polyphase incidents u>120%/t-60s 11 N31 110%/s-60s Number of polyphase incidents u>120%/t-60s 12 N32 120%/s-60s Number of polyphase incidents u>120%/t-60s 13 N33 140%/s-60s Number of polyphase incidents u>120%/t-60s 14 N34 160%/s-60s Number of polyphase incidents u>120%/t-60s 15 N35 200%/s-60s Number of polyphase incidents u>200%/t-60s 16 V1 N1 Total number of incidents on phase V1 17 V1 Max Maximum voltage magnitud	0		
2 N12 120%/1s Number of polyphase incidents u>100%/t<1s	1	N11 110%/1e	
8 N23 140%/60s Number of polyphase incidents u>140%/t<60s			
8 N23 140%/60s Number of polyphase incidents u>140%/t<60s	3		
8 N23 140%/60s Number of polyphase incidents u>140%/t<60s	р и		
8 N23 140%/60s Number of polyphase incidents u>140%/t<60s	5		
8 N23 140%/60s Number of polyphase incidents u>140%/t<60s	5		
8 N23 140%/60s Number of polyphase incidents u>140%/t<60s	7		
10 N25 200%/60s Number of polyphase incidents u>200%/t<60s			
10 N25 200%/60s Number of polyphase incidents u>200%/t<60s	9		
11 N31 110%/>60s Number of polyphase incidents u>110%/t>60s 12 N32 120%/>60s Number of polyphase incidents u>120%/t>60s 13 N33 140%/>60s Number of polyphase incidents u>140%/t>60s 14 N34 160%/>60s Number of polyphase incidents u>10%/t>60s 15 N35 200%/>60s Number of polyphase incidents u>200%/t>60s 16 V1 N1 Total number of incidents on phase V1 17 V1 Max Maximum voltage magnitude on phase V2 18 V2 N1 Total number of incidents on phase V2 19 V2 Max Maximum voltage magnitude on phase V3 20 V3 N1 Total number of polyphase incidents u>100% 21 V3 Max Maximum voltage magnitude on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 22 N2 150% Number of polyphase incidents u>100% 23 N3 200% Number of polyphase incidents u>200% 4 N4 250% Number of incidents u>200% 5 N5 300% Number of incidents u>200% on phase V1 7 V1 N2 150% Number of inciden			
12 N32 120%/>60s Number of polyphase incidents u>120%/t>60s 13 N33 140%/>60s Number of polyphase incidents u>140%/t>60s 14 N34 160%/>60s Number of polyphase incidents u>160%/t>60s 15 N35 200%/>60s Number of polyphase incidents u>200%/t>60s 16 V1 N1 Total number of incidents on phase V1 17 V1 Max Maximum voltage magnitude on phase V2 18 V2 N1 Total number of incidents on phase V2 19 V2 Max Maximum voltage magnitude on phase V2 20 V3 N1 Total number of incidents on phase V2 21 V3 Max Maximum voltage magnitude on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 22 V3 N1 Total number of polyphase incidents u>120% 24 V3 Max Maximum voltages incidents u>120% 25 N2 150% Number of polyphase incidents u>200% 4 N4 250% Number of incidents u>120% on phase V1 7 V1 N2 150% Number of incidents u>200% on phase V1 7 V1 N2 150% Number of incident			
13 N33 140%/>60s Number of polyphase incidents u>140%/t>60s 14 N34 160%/>60s Number of polyphase incidents u>160%/t>60s 15 N35 200%/>60s Number of polyphase incidents u>200%/t>60s 16 V1 N1 Total number of incidents on phase V1 17 V1 Max Maximum voltage magnitude on phase V1 18 V2 N1 Total number of incidents on phase V2 19 V2 Max Maximum voltage magnitude on phase V2 20 V3 N1 Total number of incidents on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 22 V3 Max Maximum voltage magnitude on phase V3 23 N1 10% Number of polyphase incidents u>120% 24 V3 Max Maximum voltage incidents u>200% 3 N3 200% Number of polyphase incidents u>200% 4 N4 250% Number of incidents u>120% on phase V1 7 V1 N1 10% Number of incidents u>200% on phase V1 7 V1 N2 150% Number of incidents u>200% on phase V1			
14 N34 160%/>60s Number of polyphase incidents u>160%/t>60s 15 N35 200%/>60s Number of polyphase incidents u>200%/t>60s 16 V1 N1 Total number of incidents on phase V1 17 V1 Max Maximum voltage magnitude on phase V1 18 V2 N1 Total number of incidents on phase V2 19 V2 Max Maximum voltage magnitude on phase V2 20 V3 N1 Total number of incidents on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 22 V3 Max Maximum voltage magnitude on phase V3 23 Transient Overvoltages (indicative statistics) 11 N1 10% Number of polyphase incidents u>120% 2 N2 150% Number of polyphase incidents u>200% 4 N4 250% Number of incidents u>300% 6 V1 N1 110% Number of incidents u>120% on phase V1 7 V1 N2 150% Number of incidents u>200% on phase V1 8 V1 N3 200% Number of incidents u>200% on phase V1			
15 N35 200%/>60s Number of polyphase incidents u>200%/t>60s 16 V1 N1 Total number of incidents on phase V1 17 V1 Max Maximum voltage magnitude on phase V1 18 V2 N1 Total number of incidents on phase V2 19 V2 Max Maximum voltage magnitude on phase V2 20 V3 N1 Total number of incidents on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 22 V2 150% Number of polyphase incidents u>120% 23 N2 150% Number of polyphase incidents u>200% 4 N4 250% Number of polyphase incidents u>200% 4 N4 250% Number of incidents u>120% on phase V1 5 N5 300% Number of incidents u>120% on phase V1 6 V1 N1 110% Number of incidents u>200% on phase V1 7 V1 N2 150% Number of incidents u>200% on phase V1 10 V1 N5 300% Number of incidents u>200% on phase V2 <			
16 V1 N1 Total number of incidents on phase V1 17 V1 Max Maximum voltage magnitude on phase V1 18 V2 N1 Total number of incidents on phase V2 19 V2 Max Maximum voltage magnitude on phase V2 20 V3 N1 Total number of incidents on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 22 N2 150% Number of polyphase incidents u>120% 23 N3 200% Number of polyphase incidents u>200% 4 N4 250% Number of polyphase incidents u>200% 5 N5 300% Number of incidents u>120% on phase V1 6 V1 N1 110% Number of incidents u>200% on phase V1 7 V1 N2 150% Number of incidents u>200% on phase V1			
17V1 MaxMaximum voltage magnitude on phase V118V2 N1Total number of incidents on phase V219V2 MaxMaximum voltage magnitude on phase V220V3 N1Total number of incidents on phase V321V3 MaxMaximum voltage magnitude on phase V3Transient Overvoltages (indicative statistics)1N1 110%Number of polyphase incidents u>120%2N2 150%Number of polyphase incidents u>120%2N2 150%Number of polyphase incidents u>200%3N3 200%Number of polyphase incidents u>200%4N4 250%Number of polyphase incidents u>200%5N5 300%Number of polyphase incidents u>300%6V1 N1 110%Number of incidents u>120% on phase V17V1 N2 150%Number of incidents u>200% on phase V18V1 N3 200%Number of incidents u>200% on phase V19V1 N4 250%Number of incidents u>200% on phase V110V1 N5 300%Number of incidents u>200% on phase V111V2 N1 110%Number of incidents u>200% on phase V112V2 N2 150%Number of incidents u>200% on phase V213V2 N3 200%Number of incidents u>200% on phase V214V2 N4 250%Number of incidents u>200% on phase V215V2 N5 300%Number of incidents u>300% on phase V216V3 N1 110%Number of incidents u>100% on phase V317V3 N2 150%Number of incidents u>100% on phase V3	16		
18 V2 N1 Total number of incidents on phase V2 19 V2 Max Maximum voltage magnitude on phase V2 20 V3 N1 Total number of incidents on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 21 V3 Max Maximum voltage magnitude on phase V3 Transient Overvoltages (indicative statistics) 1 N1 110% Number of polyphase incidents u>120% 2 N2 150% Number of polyphase incidents u>150% 3 N3 200% Number of polyphase incidents u>200% 4 N4 250% Number of polyphase incidents u>200% 5 N5 300% Number of polyphase incidents u>200% 6 V1 N1 110% Number of incidents u>120% on phase V1 7 V1 N2 150% Number of incidents u>200% on phase V1 8 V1 N3 200% Number of incidents u>200% on phase V1 9 V1 N4 250% Number of incidents u>200% on phase V1 10 V1 N5 300% Number of incidents u>200% on phase V1 11 V2 N1 110% Number of incidents u>200% on phase V2 12 V2 N2 150% Number of incidents u>200% on phase V2	·	i	
19V2 MaxMaximum voltage magnitude on phase V220V3 N1Total number of incidents on phase V321V3 MaxMaximum voltage magnitude on phase V321V3 MaxMaximum voltage magnitude on phase V321V3 MaxMaximum voltage magnitude on phase V321V1 110%Number of polyphase incidents u>120%2N2 150%Number of polyphase incidents u>150%3N3 200%Number of polyphase incidents u>200%4N4 250%Number of polyphase incidents u>200%5N5 300%Number of polyphase incidents u>200%6V1 N1 110%Number of incidents u>120% on phase V17V1 N2 150%Number of incidents u>120% on phase V18V1 N3 200%Number of incidents u>200% on phase V19V1 N4 250%Number of incidents u>200% on phase V110V1 N5 300%Number of incidents u>200% on phase V111V2 N1 110%Number of incidents u>200% on phase V212V2 N2 150%Number of incidents u>200% on phase V213V2 N3 200%Number of incidents u>200% on phase V214V2 N4 250%Number of incidents u>300% on phase V215V2 N5 300%Number of incidents u>300% on phase V316V3 N1 110%Number of incidents u>120% on phase V3			
20V3 N1Total number of incidents on phase V321V3 MaxMaximum voltage magnitude on phase V321V3 MaxMaximum voltage magnitude on phase V321V3 MaxMaximum voltage magnitude on phase V31N1 110%Number of polyphase incidents u>120%2N2 150%Number of polyphase incidents u>150%3N3 200%Number of polyphase incidents u>200%4N4 250%Number of polyphase incidents u>200%5N5 300%Number of polyphase incidents u>200%6V1 N1 110%Number of incidents u>120% on phase V17V1 N2 150%Number of incidents u>120% on phase V18V1 N3 200%Number of incidents u>200% on phase V19V1 N4 250%Number of incidents u>200% on phase V110V1 N5 300%Number of incidents u>200% on phase V111V2 N1 110%Number of incidents u>200% on phase V212V2 N2 150%Number of incidents u>200% on phase V213V2 N3 200%Number of incidents u>200% on phase V214V2 N4 250%Number of incidents u>200% on phase V215V2 N5 300%Number of incidents u>300% on phase V216V3 N1 110%Number of incidents u>120% on phase V317V3 N2 150%Number of incidents u>150% on phase V3			
21V3 MaxMaximum voltage magnitude on phase V3Transient Overvoltages (indicative statistics)1N1 110%Number of polyphase incidents u>120%2N2 150%Number of polyphase incidents u>150%3N3 200%Number of polyphase incidents u>200%4N4 250%Number of polyphase incidents u>20%5N5 300%Number of polyphase incidents u>20%6V1 N1 110%Number of polyphase incidents u>300%6V1 N1 110%Number of incidents u>120% on phase V17V1 N2 150%Number of incidents u>200% on phase V18V1 N3 200%Number of incidents u>200% on phase V19V1 N4 250%Number of incidents u>200% on phase V110V1 N5 300%Number of incidents u>200% on phase V111V2 N1 110%Number of incidents u>300% on phase V212V2 N2 150%Number of incidents u>200% on phase V213V2 N3 200%Number of incidents u>200% on phase V214V2 N4 250%Number of incidents u>300% on phase V215V2 N5 300%Number of incidents u>300% on phase V216V3 N1 110%Number of incidents u>120% on phase V317V3 N2 150%Number of incidents u>150% on phase V3			
Transient Overvoltages (indicative statistics)1N1 110%Number of polyphase incidents u>120%2N2 150%Number of polyphase incidents u>150%3N3 200%Number of polyphase incidents u>200%4N4 250%Number of polyphase incidents u>20%5N5 300%Number of polyphase incidents u>20%6V1 N1 110%Number of incidents u>120% on phase V17V1 N2 150%Number of incidents u>120% on phase V18V1 N3 200%Number of incidents u>200% on phase V19V1 N4 250%Number of incidents u>200% on phase V110V1 N5 300%Number of incidents u>200% on phase V111V2 N1 110%Number of incidents u>200% on phase V212V2 N2 150%Number of incidents u>200% on phase V213V2 N3 200%Number of incidents u>200% on phase V214V2 N4 250%Number of incidents u>200% on phase V215V2 N5 300%Number of incidents u>200% on phase V216V3 N1 110%Number of incidents u>120% on phase V317V3 N2 150%Number of incidents u>150% on phase V3	21		
1N1 110%Number of polyphase incidents u>120%2N2 150%Number of polyphase incidents u>150%3N3 200%Number of polyphase incidents u>200%4N4 250%Number of polyphase incidents u>250%5N5 300%Number of polyphase incidents u>300%6V1 N1 110%Number of incidents u>120% on phase V17V1 N2 150%Number of incidents u>150% on phase V18V1 N3 200%Number of incidents u>200% on phase V19V1 N4 250%Number of incidents u>200% on phase V110V1 N5 300%Number of incidents u>200% on phase V111V2 N1 110%Number of incidents u>200% on phase V212V2 N2 150%Number of incidents u>200% on phase V213V2 N3 200%Number of incidents u>200% on phase V214V2 N4 250%Number of incidents u>200% on phase V215V2 N5 300%Number of incidents u>300% on phase V216V3 N1 110%Number of incidents u>120% on phase V317V3 N2 150%Number of incidents u>150% on phase V3		1	
2N2 150%Number of polyphase incidents u>150%3N3 200%Number of polyphase incidents u>200%4N4 250%Number of polyphase incidents u>250%5N5 300%Number of polyphase incidents u>300%6V1 N1 110%Number of incidents u>120% on phase V17V1 N2 150%Number of incidents u>150% on phase V18V1 N3 200%Number of incidents u>200% on phase V19V1 N4 250%Number of incidents u>200% on phase V110V1 N5 300%Number of incidents u>200% on phase V111V2 N1 110%Number of incidents u>200% on phase V212V2 N2 150%Number of incidents u>200% on phase V213V2 N3 200%Number of incidents u>200% on phase V214V2 N4 250%Number of incidents u>200% on phase V215V2 N5 300%Number of incidents u>300% on phase V216V3 N1 110%Number of incidents u>120% on phase V317V3 N2 150%Number of incidents u>150% on phase V3	1		
3N3 200%Number of polyphase incidents u>200%4N4 250%Number of polyphase incidents u>250%5N5 300%Number of polyphase incidents u>300%6V1 N1 110%Number of incidents u>120% on phase V17V1 N2 150%Number of incidents u>120% on phase V18V1 N3 200%Number of incidents u>200% on phase V19V1 N4 250%Number of incidents u>200% on phase V110V1 N5 300%Number of incidents u>200% on phase V111V2 N1 110%Number of incidents u>300% on phase V212V2 N2 150%Number of incidents u>120% on phase V213V2 N3 200%Number of incidents u>200% on phase V214V2 N4 250%Number of incidents u>300% on phase V215V2 N5 300%Number of incidents u>300% on phase V216V3 N1 110%Number of incidents u>120% on phase V317V3 N2 150%Number of incidents u>150% on phase V3			
8 V1 N3 200% Number of incidents u>200% on phase V1 9 V1 N4 250% Number of incidents u>250% on phase V1 10 V1 N5 300% Number of incidents u>300% on phase V1 11 V2 N1 110% Number of incidents u>120% on phase V2 12 V2 N2 150% Number of incidents u>150% on phase V2 13 V2 N3 200% Number of incidents u>200% on phase V2 14 V2 N4 250% Number of incidents u>200% on phase V2 15 V2 N5 300% Number of incidents u>300% on phase V2 16 V3 N1 110% Number of incidents u>120% on phase V3 17 V3 N2 150% Number of incidents u>150% on phase V3	3		
8 V1 N3 200% Number of incidents u>200% on phase V1 9 V1 N4 250% Number of incidents u>250% on phase V1 10 V1 N5 300% Number of incidents u>300% on phase V1 11 V2 N1 110% Number of incidents u>120% on phase V2 12 V2 N2 150% Number of incidents u>150% on phase V2 13 V2 N3 200% Number of incidents u>200% on phase V2 14 V2 N4 250% Number of incidents u>200% on phase V2 15 V2 N5 300% Number of incidents u>300% on phase V2 16 V3 N1 110% Number of incidents u>120% on phase V3 17 V3 N2 150% Number of incidents u>150% on phase V3	4		
8 V1 N3 200% Number of incidents u>200% on phase V1 9 V1 N4 250% Number of incidents u>250% on phase V1 10 V1 N5 300% Number of incidents u>300% on phase V1 11 V2 N1 110% Number of incidents u>120% on phase V2 12 V2 N2 150% Number of incidents u>150% on phase V2 13 V2 N3 200% Number of incidents u>200% on phase V2 14 V2 N4 250% Number of incidents u>200% on phase V2 15 V2 N5 300% Number of incidents u>300% on phase V2 16 V3 N1 110% Number of incidents u>120% on phase V3 17 V3 N2 150% Number of incidents u>150% on phase V3	5	N5 300%	
8 V1 N3 200% Number of incidents u>200% on phase V1 9 V1 N4 250% Number of incidents u>250% on phase V1 10 V1 N5 300% Number of incidents u>300% on phase V1 11 V2 N1 110% Number of incidents u>120% on phase V2 12 V2 N2 150% Number of incidents u>150% on phase V2 13 V2 N3 200% Number of incidents u>200% on phase V2 14 V2 N4 250% Number of incidents u>200% on phase V2 15 V2 N5 300% Number of incidents u>300% on phase V2 16 V3 N1 110% Number of incidents u>120% on phase V3 17 V3 N2 150% Number of incidents u>150% on phase V3	6		Number of incidents u>120% on phase V1
8 V1 N3 200% Number of incidents u>200% on phase V1 9 V1 N4 250% Number of incidents u>250% on phase V1 10 V1 N5 300% Number of incidents u>300% on phase V1 11 V2 N1 110% Number of incidents u>120% on phase V2 12 V2 N2 150% Number of incidents u>150% on phase V2 13 V2 N3 200% Number of incidents u>200% on phase V2 14 V2 N4 250% Number of incidents u>200% on phase V2 15 V2 N5 300% Number of incidents u>300% on phase V2 16 V3 N1 110% Number of incidents u>120% on phase V3 17 V3 N2 150% Number of incidents u>150% on phase V3	7	V1 N2 150%	Number of incidents u>150% on phase V1
10 V1 N5 300% Number of incidents u>300% on phase V1 11 V2 N1 110% Number of incidents u>120% on phase V2 12 V2 N2 150% Number of incidents u>150% on phase V2 13 V2 N3 200% Number of incidents u>200% on phase V2 14 V2 N4 250% Number of incidents u>200% on phase V2 15 V2 N5 300% Number of incidents u>300% on phase V2 16 V3 N1 110% Number of incidents u>120% on phase V3 17 V3 N2 150% Number of incidents u>150% on phase V3			
10 V1 N5 300% Number of incidents u>300% on phase V1 11 V2 N1 110% Number of incidents u>120% on phase V2 12 V2 N2 150% Number of incidents u>150% on phase V2 13 V2 N3 200% Number of incidents u>200% on phase V2 14 V2 N4 250% Number of incidents u>200% on phase V2 15 V2 N5 300% Number of incidents u>300% on phase V2 16 V3 N1 110% Number of incidents u>120% on phase V3 17 V3 N2 150% Number of incidents u>150% on phase V3	9		
11 V2 N1 110% Number of incidents u>120% on phase V2 12 V2 N2 150% Number of incidents u>150% on phase V2 13 V2 N3 200% Number of incidents u>200% on phase V2 14 V2 N4 250% Number of incidents u>250% on phase V2 15 V2 N5 300% Number of incidents u>300% on phase V2 16 V3 N1 110% Number of incidents u>120% on phase V3 17 V3 N2 150% Number of incidents u>150% on phase V3	10	V1 N5 300%	
12 V2 N2 150% Number of incidents u>150% on phase V2 13 V2 N3 200% Number of incidents u>200% on phase V2 14 V2 N4 250% Number of incidents u>250% on phase V2 15 V2 N5 300% Number of incidents u>300% on phase V2 16 V3 N1 110% Number of incidents u>120% on phase V3 17 V3 N2 150% Number of incidents u>150% on phase V3	11		
13 V2 N3 200% Number of incidents u>200% on phase V2 14 V2 N4 250% Number of incidents u>250% on phase V2 15 V2 N5 300% Number of incidents u>300% on phase V2 16 V3 N1 110% Number of incidents u>120% on phase V3 17 V3 N2 150% Number of incidents u>150% on phase V3	12	V2 N2 150%	
V2 N4 250% Number of incidents u>250% on phase V2 15 V2 N5 300% Number of incidents u>300% on phase V2 16 V3 N1 110% Number of incidents u>120% on phase V3 17 V3 N2 150% Number of incidents u>150% on phase V3	13	V2 N3 200%	
V2 N5 300% Number of incidents u>300% on phase V2 16 V3 N1 110% Number of incidents u>120% on phase V3 17 V3 N2 150% Number of incidents u>150% on phase V3	14	V2 N4 250%	
V3 N1 110% Number of incidents u>120% on phase V3 17 V3 N2 150% Number of incidents u>150% on phase V3	15		
17 V3 N2 150% Number of incidents u>150% on phase V3	16		Number of incidents u>120% on phase V3
18 V3 N3 200% Number of incidents u>200% on phase V3	17		
	18	V3 N3 200%	Number of incidents u>200% on phase V3

Field No.	Designation	Description
19	V3 N4 250%	Number of incidents u>250% on phase V3
20	V3 N5 300%	Number of incidents u>300% on phase V3
21	V1 Peak Max	Maximum peak voltage on phase V1
22	V2 Peak Max	Maximum peak voltage on phase V2
23	V3 Peak Max	Maximum peak voltage on phase V3
		Supply Voltage Unbalance
1	Nnv	Number of non-valid 10-min intervals
2	Ν	Number of valid 10-min intervals
2 3 4 5	N1	Number of incidents V Unb > 2%, N1
4	N1/N, %	EN50160 compliance ratio, N1/N
5	V Unb% Max	Maximum voltage unbalance
		Harmonic Voltage
1	Nnv	Number of non-valid 10-min intervals
2	N	Number of valid 10-min intervals
3	N1	Number of polyphase harmonic voltage incidents, N1
4	N2	Number of polyphase voltage THD incidents, N2
0	N1/N, %	EN50160 harmonic voltage compliance ratio, N1/N
2 3 4 5 6 7	N2/N, % V1 N1	EN50160 voltage THD compliance ratio, N2/N
/ Q	V1 N2	Number of harmonic voltage incidents on phase V1 Number of voltage THD incidents on phase V1
8 9	V1 HD% Max	Worst-case harmonic magnitude on phase V1, %Un
5 10	V1 H#	Worst-case harmonic component number on phase V1
10	V1 THD Max	Worst-case voltage THD on phase V1
12	V2 N1	Number of harmonic voltage incidents on phase V2
13	V2 N2	Number of voltage THD incidents on phase V2
14	V2 HD% Max	Worst-case harmonic magnitude on phase V2, %Un
15	V2 H#	Worst-case harmonic component number on phase V2
16	V2 THD Max	Worst-case voltage THD on phase V2
17	V3 N1	Number of harmonic voltage incidents on phase V3
18	V3 N2	Number of voltage THD incidents on phase V3
19	V3 HD% Max	Worst-case harmonic magnitude on phase V3, %Un
20	V3 H#	Worst-case harmonic component number on phase V3
21	V3 THD Max	Worst-case voltage THD on phase V3
		Interharmonic Voltage
1 2 3 4 5 6 7	Nnv	Number of non-valid 10-min intervals
2	N	Number of valid 10-min intervals
3	N1	Number of polyphase interharmonic voltage incidents, N1
4	N2	Number of polyphase interharmonic THD incidents, N2
b 0	N1/N, %	EN50160 interharmonic voltage compliance ratio, N1/N
0	N2/N, %	EN50160 interharmonic voltage THD compliance ratio, N2/N
	V1 N1 V1 N2	Number of interharmonic voltage incidents on phase V1
8 9	V1 HD% Max	Number of interharmonic voltage THD incidents on phase V1 Worst-case interharmonic magnitude on phase V1, %Un
5 10	V1 H#	Worst-case interharmonic component number on phase V1
10	V1 THD Max	Worst-case internamonic component number on phase V1
12	V2 N1	Number of interharmonic voltage incidents on phase V2
13	V2 N2	Number of interharmonic voltage THD incidents on phase V2
14	V2 HD% Max	Worst-case interharmonic magnitude on phase V2, %Un
15	V2 H#	Worst-case interharmonic component number on phase V2
16	V2 THD Max	Worst-case interharmonic voltage THD on phase V2
17	V3 N1	Number of interharmonic voltage incidents on phase V3
18	V3 N2	Number of interharmonic voltage THD incidents on phase V3
19	V3 HD% Max	Worst-case interharmonic magnitude on phase V3, %Un
20	V3 H#	Worst-case interharmonic component number on phase V3
21	V3 THD Max	Worst-case interharmonic THD on phase V3
		Mains Signaling Voltage
1	Nnv	Number of non-valid 3-sec intervals
2	Ν	Number of valid 3-sec intervals
3	N1	Number of polyphase incidents, N1
4	N1/N, %	EN50160 compliance ratio, N1/N
5	V1 N1	Number of incidents on phase V1
2 3 4 5 6 7	V1 Frq1 %Un	Maximum 1st signaling voltage magnitude on phase V1, %Un
	V1 Frq2 %Un	Maximum 2nd signaling voltage magnitude on phase V1, %Un
8 9	V1 Frq3 %Un	Maximum 3rd signaling voltage magnitude on phase V1, %Un
	V1 Frq4 %Un	Maximum 4th signaling voltage magnitude on phase V1, %Un
10	V2 N1	Number of incidents on phase V2
11	V2 Frq1 %Un	Maximum 1st signaling voltage magnitude on phase V2, %Un
12	V2 Frq2 %Un	Maximum 2nd signaling voltage magnitude on phase V2, %Un

Field No.	Designation	Description
13	V2 Frq3 %Un	Maximum 3rd signaling voltage magnitude on phase V2, %Un
14	V2 Frq4 %Un	Maximum 4th signaling voltage magnitude on phase V2, %Un
15	V3 N1	Number of incidents on phase V3
16	V3 Frq1 %Un	Maximum 1st signaling voltage magnitude on phase V3, %Un
17	V3 Frq2 %Un	Maximum 2nd signaling voltage magnitude on phase V3, %Un
18	V3 Frq3 %Un	Maximum 3rd signaling voltage magnitude on phase V3, %Un
19	V3 Frq4 %Un	Maximum 4th signaling voltage magnitude on phase V3, %Un
20	Frq1	1st signaling voltage frequency
21	Frq2	2nd signaling voltage frequency
22	Frq3	3rd signaling voltage frequency
23	Frq4	4th signaling voltage frequency

EN50160 Harmonics Survey Log (Data Log #10)

Field No.	Designation	Description		
	-	V1 Harmonic Voltage		
1	THD MAX	Maximum THD		
2	THDO MAX	Maximum odd harmonics THD		
3	THDE MAX	Maximum even harmonics THD		
4	%HD02 MAX	Maximum H02 harmonic voltage magnitude, %Un		
5	%HD03 MAX	Maximum H03 harmonic voltage magnitude, %Un		
52	%HD50 MAX	Maximum H50 harmonic voltage magnitude, %Un		
		V2 Harmonic Voltage		
1	THD MAX	Maximum THD		
2	THDO MAX	Maximum odd harmonics THD		
3	THDE MAX	Maximum even harmonics THD		
4	%HD02 MAX	Maximum H02 harmonic voltage magnitude, %Un		
5	%HD03 MAX	Maximum H03 harmonic voltage magnitude, %Un		
52	%HD50 MAX	Maximum H50 harmonic voltage magnitude, %Un		
		V3 Harmonic Voltage		
1	THD MAX	Maximum THD		
2	THDO MAX	Maximum odd harmonics THD		
3	THDE MAX	Maximum even harmonics THD		
4	%HD02 MAX	Maximum H02 harmonic voltage magnitude, %Un		
5	%HD03 MAX	Maximum H03 harmonic voltage magnitude, %Un		
52	%HD50 MAX	Maximum H50 harmonic voltage magnitude, %Un		

Appendix E Data Scales

The maximum values for volts, amps and power in the PM180 setup and in communications are limited by the voltage and current scale settings. See <u>Advanced Device Setup</u> in Chapter 6 on how to change the voltage and current scales in your device.

The following table shows the device data scales.

Scale	Conditions	Range
Maximum voltage (V max)	All configurations	Voltage scale \times PT Ratio, V ¹
Maximum current (I max)	All configurations	Current scale × CT Ratio, A ^{2, 3}
Maximum fault current (Ix max)	All configurations	$30 \times CT$ primary current, A
Maximum Power (P max) ⁴	All configurations	$V \max \times I \max \times 2, W$
Maximum frequency	50 or 60 Hz	100 Hz

¹ The default voltage scale is 828V. The recommended voltage scale is 120V+20% = 144V for using with external PT's, and 690V+20% = 828V for a direct connection to power line.

² CT Ratio = CT primary current/CT secondary current

³ The default current scale is $2 \times CT$ secondary for the IEC current input option (2.0A with 1A secondaries and 10.0A with 5A secondaries), and $4 \times CT$ secondary for the ANSI current input option (4.0A with 1A secondaries and 20.0A with 5A secondaries).

 4 Maximum power is rounded to whole kilowatts. With PT=1.0, it is limited to 9,999,000 W.

Appendix F Device Diagnostic Codes

Diagnostic	Description	Reason
Code	-	
0	Critical error	Unrecoverable system failure - device
		operation stops
1	Permanent fault (critical error)	Repeated unrecoverable failure
2	Memory/Data error	Hardware failure
3	Hardware watchdog reset	Hardware failure
4	DSP/Sampling fault	Hardware failure
5	CPU exception	Hardware failure
7	Software watchdog timeout	Hardware failure
8	Power down/Up	Loss of power
9	Warm restart/Device reset	External restart via communications or
		by firmware upgrade
10	Configuration reset	Corrupted setup data has been replaced
		with the default configuration
11	RTC fault (critical error)	The clock time has been lost
12	Configuration fault (critical error)	Factory, calibration or basic device
		configuration data has been corrupted
14	Expanded memory fault	Hardware failure
15	CPU EEPROM fault	Hardware failure
16	AC board EEPROM fault	Hardware failure
17	I/O board EEPROM fault	Hardware failure
20	C Library error	Hardware failure
21	RTOS Kernel error	Hardware failure
22	Task error	Hardware failure
24	IRIG-B signal lost	No IRIG-B signal from the GPS master
		clock. Cleared automatically when the
		IRIG-B signal is detected.
25	IRIG-B time unlocked	The GPS master clock has lost the
		satellite signal. Cleared automatically
		when the satellite signal is locked.

NOTE

A critical error is an unrecoverable hardware or configuration failure that causes the device to release all its outputs and to stop normal operation until the critical error is cleared.

See <u>Device Diagnostics</u> for more information on the PM180 built-in diagnostics. See <u>Viewing and</u> <u>Clearing Device Diagnostics</u> in Chapter 10, <u>Viewing and Clearing Device Diagnostics</u> in Chapter 3, and <u>Status Information Display</u> in Chapter 3 on how to inspect and clear the device diagnostics.